Extensions of cubic ideals in weak left almost semihypergroups

Cubic sets are generalized version of fuzzy sets, in which there are two representations, one is used for the degree of membership and other is used for the degree of non-membership. Membership function is handled in the form of intervals while non-membership is handled through ordinary fuzzy sets. Since the invention of fuzzy set many researchers applied this notion to different algebraic structures. Mostly, they focus on the associative structures. Here we concentrate on a useful non associative structure known as Hv-LA-semigroup. Using this idea, we characterize an Hv-LA-semigroup in terms of cubic ideals. We study the idea of cubic equivalence relations, cubic regular relations in Hv-LA-semigroups and provide some related results.

[1]  Naseeruddin,et al.  On almost semigroups , 1977 .

[2]  K. Hila,et al.  On Hyperideals in Left Almost Semihypergroups , 2011 .

[3]  Bijan Davvaz,et al.  Extensions of fuzzy hyperideals in HV-semigroups , 2007, Soft Comput..

[4]  Neboǰsa Stevanović,et al.  Composition of Abel-grassmann's 3-bands , 2005 .

[5]  Young Bae Jun,et al.  Characterizations of hemirings in terms of cubic $$h$$h-ideals , 2015, Soft Comput..

[6]  Bijan Davvaz,et al.  Fundamental relation on Γ-hyperrings , 2011, Ars Comb..

[7]  Kyung Ho Kim,et al.  Fuzzy Gamma-hypernear-rings , 2010, Comput. Math. Appl..

[8]  Thomas Vougiouklis,et al.  ALGEBRAIC HYPERSTRUCTURES AND APPLICATIONS: Proceedings of the Fourth International Congress , 1991 .

[9]  Bijan Davvaz,et al.  An Introduction to the Theory of Hv-Semilattices , 2009 .

[10]  Stephanos Spartalis,et al.  On the number of Hv-rings with P-hyperoperations , 1996, Discret. Math..

[11]  Lotfi A. Zadeh,et al.  Similarity relations and fuzzy orderings , 1971, Inf. Sci..

[12]  Bijan Davvaz,et al.  ON ( $alpha, beta$ )-FUZZY Hv-IDEALS OF H_{v}-RINGS , 2008 .

[13]  Y. Jun,et al.  CUBIC IDEALS IN SEMIGROUPS , 2013 .

[14]  Protić P.V.,et al.  AG-test and some general properties of Abel-Grassmann's groupoids , 1995 .

[15]  Young Bae Jun,et al.  Cubic structures applied to ideals of BCI-algebras , 2011, Comput. Math. Appl..

[16]  Bijan Davvaz,et al.  Fuzzy hyperrings , 2009, Fuzzy Sets Syst..

[17]  T. Vougiouklis ∂-operations and HV-fields , 2008 .

[18]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[19]  Jung R. Cho,et al.  Paramedial groupoids , 1999 .

[20]  Violeta Leoreanu Fotea,et al.  Fuzzy hypermodules , 2009, Comput. Math. Appl..

[21]  A. Kordi,et al.  Multiplicative hyperring of fractions and coprime hyperideals , 2017 .

[22]  Reza Ameri,et al.  ON FUZZY HYPERIDEALS OF Γ-HYPERRINGS , 2009 .

[23]  F. Marty Sur une generalization de la notion de groupe , 1934 .

[24]  M. Shahzad,et al.  A Note on H V -la-semigroups , 2015 .

[25]  N. Yaqoob,et al.  On Intra-Regular Left Almost Semihypergroups with Pure Left Identity , 2012, 1211.5588.

[26]  R. Ameri,et al.  SPECTRUM OF PRIME FUZZY HYPERIDEALS , 2009 .

[27]  N. Yaqoob,et al.  On (m,n)-ideals in LA-semigroups , 2013 .

[28]  I. Cristea,et al.  FUNDAMENTAL Γ-SEMIGROUPS THROUGH Hv-Γ-SEMIGROUPS , 2013 .

[29]  Piergiulio Corsini,et al.  On fuzzy hypergroups , 1997 .

[30]  Reza Ameri,et al.  ON FUZZY HYPERIDEALS OF $Gamma$-HYPERRINGS , 2009 .

[31]  P. Corsini,et al.  Applications of Hyperstructure Theory , 2010 .

[32]  S. Spartalis On HV-SEMIGROUPS , 2002 .

[33]  M. M. Zahedi,et al.  HYPERGROUPS AND GENERAL FUZZY AUTOMATA , 2009 .