Tumor growth model of ductal carcinoma: from in situ phase to stroma invasion.

[1]  H. Greenspan On the growth and stability of cell cultures and solid tumors. , 1976, Journal of theoretical biology.

[2]  M J Bissell,et al.  The importance of the microenvironment in breast cancer progression: recapitulation of mammary tumorigenesis using a unique human mammary epithelial cell model and a three-dimensional culture assay. , 1996, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[3]  F. Kleinhans,et al.  Membrane permeability modeling: Kedem-Katchalsky vs a two-parameter formalism. , 1998, Cryobiology.

[4]  L. Riethdorf,et al.  Matrix-metalloproteinases 1, 2 and 3 and their tissue inhibitors 1 and 2 in benign and malignant breast lesions: an in situ hybridization study , 1999, Virchows Archiv.

[5]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[6]  J. A. Sethian,et al.  Fast Marching Methods , 1999, SIAM Rev..

[7]  M. Duffy,et al.  Metalloproteinases: role in breast carcinogenesis, invasion and metastasis , 2000, Breast Cancer Research.

[8]  Carlos López-Otín,et al.  Strategies for MMP inhibition in cancer: innovations for the post-trial era , 2002, Nature Reviews Cancer.

[9]  L. Preziosi,et al.  ON THE CLOSURE OF MASS BALANCE MODELS FOR TUMOR GROWTH , 2002 .

[10]  Ingo Klimant,et al.  Determination of oxygen gradients in engineered tissue using a fluorescent sensor. , 2002, Biotechnology and bioengineering.

[11]  H. M. Byrne,et al.  Modelling the early growth of ductal carcinoma in situ of the breast , 2003, Journal of mathematical biology.

[12]  H M Byrne,et al.  Mathematical modelling of comedo ductal carcinoma in situ of the breast. , 2003, Mathematical medicine and biology : a journal of the IMA.

[13]  H. Chung,et al.  Sequential production and activation of matrix-metalloproteinase-9 (MMP-9) with breast cancer progression , 1997, Breast Cancer Research and Treatment.

[14]  J C Kent,et al.  Anatomy of the lactating human breast redefined with ultrasound imaging , 2005, Journal of anatomy.

[15]  B Ribba,et al.  A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents. , 2006, Journal of theoretical biology.

[16]  Kornelia Polyak,et al.  Microenvironmental regulation of cancer development. , 2008, Current opinion in genetics & development.

[17]  Jun Yao,et al.  Regulation of in situ to invasive breast carcinoma transition. , 2008, Cancer cell.

[18]  J. Dietl,et al.  Expression of matrix metalloproteinases (MMPs) in primary human breast cancer and breast cancer cell lines: New findings and review of the literature , 2009, BMC Cancer.

[19]  Philippe Chavrier,et al.  Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia , 2009, Journal of Cell Science.

[20]  Didier Bresch,et al.  A viscoelastic model for avascular tumor growth , 2009 .

[21]  S. Bonvalot,et al.  Le facteur de nécrose tumorale : de la biologie à la thérapie oncologique , 2009 .

[22]  D. Radisky,et al.  Microenvironmental Influences that Drive Progression from Benign Breast Disease to Invasive Breast Cancer , 2010, Journal of Mammary Gland Biology and Neoplasia.

[23]  D. Bresch,et al.  Computational Modeling of Solid Tumor Growth: The Avascular Stage , 2010, SIAM J. Sci. Comput..

[24]  Gyan Bhanot,et al.  A 2D mechanistic model of breast ductal carcinoma in situ (DCIS) morphology and progression. , 2010, Journal of theoretical biology.

[25]  William C Hines,et al.  Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression , 2011, Nature Medicine.

[26]  Rakesh K Jain,et al.  Mechanical compression drives cancer cells toward invasive phenotype , 2011, Proceedings of the National Academy of Sciences.

[27]  Hans G Othmer,et al.  The role of the microenvironment in tumor growth and invasion. , 2011, Progress in biophysics and molecular biology.

[28]  Vittorio Cristini,et al.  Patient-calibrated agent-based modelling of ductal carcinoma in situ (DCIS): from microscopic measurements to macroscopic predictions of clinical progression. , 2012, Journal of theoretical biology.

[29]  R. Sakr [Does molecular biology play any role in ductal carcinoma in situ?]. , 2013, Gynecologie, obstetrique & fertilite.

[30]  Hans G Othmer,et al.  A Hybrid Model of Tumor–Stromal Interactions in Breast Cancer , 2013, Bulletin of Mathematical Biology.

[31]  Clair Poignard,et al.  Asymptotic expansion of steady-state potential in a high contrast medium with a thin resistive layer , 2013, Appl. Math. Comput..

[32]  L. Mir,et al.  Conducting and permeable states of cell membrane submitted to high voltage pulses: mathematical and numerical studies validated by the experiments. , 2014, Journal of theoretical biology.

[33]  Clair Poignard,et al.  “Classical” Electropermeabilization Modeling at the Cell Scale , 2014, Journal of mathematical biology.

[34]  Clair Poignard,et al.  Superconvergent second order Cartesian method for solving free boundary problem for invadopodia formation , 2017, J. Comput. Phys..

[35]  Mohammad Hossein Manshaei,et al.  MMP-TIMP interactions in cancer invasion: An evolutionary game-theoretical framework. , 2017, Journal of theoretical biology.

[36]  C. Poignard,et al.  Free boundary problem for cell protrusion formations: theoretical and numerical aspects , 2017, Journal of mathematical biology.

[37]  Clair Poignard,et al.  Spatial modelling of tumour drug resistance: the case of GIST liver metastases. , 2014, Mathematical medicine and biology : a journal of the IMA.