A Multiple Motion Model Tracker Handling Occlusion and Rapid Motion Variation

We propose a new tracking method capable of handling occlusions and non-constant target motion. This is achieved using multiple simple motion models, learned at different temporal scales and combined to capture possibly complex motion patterns. These motion models are learned online in a computationally inexpensive manner. Reliable recovery of tracking after occlusions is achieved by extending the bootstrap particle filter to propagate particles at multiple temporal scales, guided by the simple models. In complex environments targets can display changes in direction or speed unaccounted for by standard polynomial motion models. To demonstrate the generality of our framework and accommodate these changes, the proposed method is also applied to a more flexible, two-stage motion model. Extensive experiments have been carried out on both publicly available benchmarks and new video sequences. Results reveal that the proposed method successfully handles occlusions and a variety of rapid changes in target motion.

[1]  X. R. Li,et al.  Performance Prediction of the Interacting Multiple Model Algorithm , 1992 .

[2]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[3]  Mario Sznaier,et al.  Dynamic Appearance Modeling for Human Tracking , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[4]  Cláudio Rosito Jung,et al.  Robust Adaptive Patch-Based Object Tracking Using Weighted Vector Median Filters , 2011, 2011 24th SIBGRAPI Conference on Graphics, Patterns and Images.

[5]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[6]  周鑫,et al.  Tracking-learning-detection (TLD)-based video object tracking method , 2012 .

[7]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[8]  Michael I. Mandel,et al.  Distributed Occlusion Reasoning for Tracking with Nonparametric Belief Propagation , 2004, NIPS.

[9]  Junseok Kwon,et al.  Tracking by Sampling Trackers , 2011, 2011 International Conference on Computer Vision.

[10]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  Charay Lerdsudwichai,et al.  Tracking multiple people with recovery from partial and total occlusion , 2005, Pattern Recognit..

[12]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[14]  Francisco Madrigal,et al.  Learning and Regularizing Motion Models for Enhancing Particle Filter-Based Target Tracking , 2011, PSIVT.

[15]  Ales Leonardis,et al.  A Two-Stage Dynamic Model for Visual Tracking , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[16]  Patrick Pérez,et al.  Data fusion for visual tracking with particles , 2004, Proceedings of the IEEE.

[17]  Vladimir Pavlovic,et al.  Learning Switching Linear Models of Human Motion , 2000, NIPS.

[18]  Stefan Roth,et al.  People-tracking-by-detection and people-detection-by-tracking , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[20]  James J. Little,et al.  A Boosted Particle Filter: Multitarget Detection and Tracking , 2004, ECCV.

[21]  Franz Pernkopf,et al.  Tracking of Multiple Targets Using Online Learning for Reference Model Adaptation , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[22]  Philippe C. Cattin,et al.  Tracking the invisible: Learning where the object might be , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[23]  Pascal Fua,et al.  Multicamera People Tracking with a Probabilistic Occupancy Map , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  A. M. Tekalp,et al.  Multiple camera tracking of interacting and occluded human motion , 2001, Proc. IEEE.

[25]  Serge J. Belongie,et al.  Visual tracking with online Multiple Instance Learning , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Robert T. Collins,et al.  Object tracking and detection after occlusion via numerical hybrid local and global mode-seeking , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Gang Hua,et al.  Context-Aware Visual Tracking , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Tony P. Pridmore,et al.  Managing Particle Spread via Hybrid Particle Filter/Kernel Mean Shift Tracking , 2007, BMVC.

[29]  Bohyung Han,et al.  Probabilistic fusion-based parameter estimation for visual tracking , 2009, Comput. Vis. Image Underst..

[30]  George W. Irwin,et al.  Multiple model bootstrap filter for maneuvering target tracking , 2000, IEEE Trans. Aerosp. Electron. Syst..

[31]  Tieniu Tan,et al.  Real-time hand tracking using a mean shift embedded particle filter , 2007, Pattern Recognit..

[32]  Michael Isard,et al.  A mixed-state condensation tracker with automatic model-switching , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).