Investigation of antileishmanial activities of CaO nanoparticles on L. tropica and L. infantum parasites, in vitro

[1]  V. Ravichandiran,et al.  Current status of nanoscale drug delivery and the future of nano-vaccine development for leishmaniasis - A review. , 2021, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[2]  H. Delavari,et al.  Synthesis of Tellurium Oxide (TeO2) Nanorods and Nanoflakes and Evaluation of Its Efficacy Against Leishmania major In Vitro and In Vivo , 2021, Acta Parasitologica.

[3]  S. Samani,et al.  In vitro effect of artemether-loaded nanostructured lipid carrier (NLC) on Leishmania infantum , 2021, Journal of Parasitic Diseases.

[4]  M. Barati,et al.  Anti-Toxoplasma Effects of Silver Nanoparticles Based on Ginger Extract: An in Vitro Study , 2020, Journal of Archives in Military Medicine.

[5]  F. Ghaffarifar,et al.  Anti-parasitic Effects of Herbal Extract-Based Silver Nanoparticles on the Trophozoite and Cystic Forms of Acanthamoeba Protozoa , 2020 .

[6]  M. Barati,et al.  Anti-Toxoplasma Effects of Artemisia aucheri Extract in Vitro , 2020 .

[7]  Ashutosh Kumar Singh,et al.  Green Synthesis, Characterisations and Antimicrobial Activities of CaO Nanoparticles , 2019, Oriental Journal of Chemistry.

[8]  A. Slawin,et al.  The effect of different parameters under ultrasound irradiation for synthesis of new nanostructured Fe3O4@bio-MOF as an efficient anti-leishmanial in vitro and in vivo conditions. , 2018, Ultrasonics sonochemistry.

[9]  V. Sarathy,et al.  Biomedical Applications of Calcium Oxide Nanoparticles-A Spectroscopic Study , 2018 .

[10]  A. Oryan,et al.  Application of nanotechnology in treatment of leishmaniasis: A Review. , 2017, Acta tropica.

[11]  L. Shao,et al.  The antimicrobial activity of nanoparticles: present situation and prospects for the future , 2017, International journal of nanomedicine.

[12]  J. Saki,et al.  Holothuria leucospilota Extract Induces Apoptosis in Leishmania major Promastigotes , 2016, Iranian journal of parasitology.

[13]  I. Sharifi,et al.  Anti-leishmanial Activity of Gossypium hirsutum L., Ferula assa-foetida L. and Artemisia aucheri Boiss. Extracts by Colorimetric Assay , 2014 .

[14]  S. Shirian,et al.  Comparison of conventional, molecular, and immunohistochemical methods in diagnosis of typical and atypical cutaneous leishmaniasis. , 2014, Archives of pathology & laboratory medicine.

[15]  A. Jebali,et al.  Nano-based antileishmanial agents: a toxicological study on nanoparticles for future treatment of cutaneous leishmaniasis. , 2013, Toxicology in vitro : an international journal published in association with BIBRA.

[16]  F. Ghaffarifar,et al.  Efficacy of biogenic selenium nanoparticles against Leishmania major: in vitro and in vivo studies. , 2013, Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements.

[17]  J. Irache,et al.  Nanomedicine: novel approaches in human and veterinary therapeutics. , 2011, Veterinary parasitology.

[18]  Mohammad Reza Aflatoonian,et al.  A New Focus of Anthroponotic Cutaneous Leishmaniasis in Dehbakry Region of Bam District, Southeastern Iran 2008 , 2010 .

[19]  I. Sharifi,et al.  In vitro Evaluation of Anti-Leishmanial Activities of Zataria Multiflora Boiss, Peganum Harmala and Myrtus Communis by Colorimetric Assay , 2010 .

[20]  O. Yamamoto,et al.  Antibacterial characteristics of CaCO3–MgO composites , 2010 .

[21]  F. Ghaffarifar,et al.  The Effect of Alkanna tincturia and Peganum harmala Extracts on Leishmania major (MRHO/IR/75/ER) in vitro , 2009 .

[22]  R. Peeling,et al.  Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? , 2007, Nature Reviews Microbiology.

[23]  A. Oryan,et al.  Histopathologic and electron microscopic characterization of cutaneous leishmaniasis in Tatera indica and Gerbillus spp. infected with Leishmania major , 2007, Comparative Clinical Pathology.

[24]  A. Ponte-Sucre,et al.  Leishmania spp.: proficiency of drug-resistant parasites. , 2007, International journal of antimicrobial agents.

[25]  S. Ha,et al.  Bactericidal effects of CaO (scallop-shell powder) on foodborne pathogenic bacteria , 2006, Archives of pharmacal research.

[26]  J. Berman,et al.  Advances in leishmaniasis , 2005, The Lancet.

[27]  M. Yacamán,et al.  Interaction of silver nanoparticles with HIV-1 , 2005, Journal of nanobiotechnology.

[28]  C. Dey,et al.  Possible Mechanism of Miltefosine-Mediated Death of Leishmania donovani , 2004, Antimicrobial Agents and Chemotherapy.

[29]  S. Croft,et al.  Leishmaniasis--current chemotherapy and recent advances in the search for novel drugs. , 2003, Trends in parasitology.

[30]  J. Sawai Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. , 2003, Journal of microbiological methods.

[31]  Shyam Sundar,et al.  Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. , 2002, The Lancet. Infectious diseases.