Pixelizing Data Cubes: A Block-Based Approach

Multidimensional databases are commonly used for decision making in the context of data warehouses. Considering the multidimensional model, data are presented as hypercubes organized according to several dimensions. However, in general, hypercubes have more than three dimensions and contain a huge amount of data, and so cannot be easily visualized. In this paper, we show that data cubes can be visualized as images by building blocks that contain mostly the same value. Blocks are built up using an APriori-like algorithm and each block is considered as a set of pixels which colors depend on the corresponding value. The key point of our approach is to set how to display a given block according to its corresponding value while taking into account that blocks may overlap. In this paper, we address this issue based on the Pixelization paradigm.

[1]  Arie Shoshani,et al.  Statistical Databases: Characteristics, Problems, and some Solutions , 1982, VLDB.

[2]  David Travis,et al.  Effective Color Displays: Theory and Practice , 1991 .

[3]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[4]  James T. Enns,et al.  Effective visualization of large multidimensional datasets , 1996 .

[5]  W. H. Inmon,et al.  Building the data warehouse (2nd ed.) , 1996 .

[6]  Mark Sullivan,et al.  Quasi-cubes: exploiting approximations in multidimensional databases , 1997, SGMD.

[7]  Surajit Chaudhuri,et al.  An overview of data warehousing and OLAP technology , 1997, SGMD.

[8]  Laks V. S. Lakshmanan,et al.  A Foundation for Multi-dimensional Databases , 1997, VLDB.

[9]  Hans-Peter Kriegel,et al.  Issues in visualizing large databases , 1997 .

[10]  Luca Cabibbo,et al.  A Logical Approach to Multidimensional Databases , 1998, EDBT.

[11]  Isidro Ramos,et al.  Advances in Database Technology — EDBT'98 , 1998, Lecture Notes in Computer Science.

[12]  Panos Vassiliadis,et al.  Modeling multidimensional databases, cubes and cube operations , 1998, Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243).

[13]  Patrick Marcel,et al.  Modeling and querying multidimensional databases: an overview , 1999 .

[14]  Timos K. Sellis,et al.  A survey of logical models for OLAP databases , 1999, SGMD.

[15]  Ben Shneiderman,et al.  Readings in information visualization - using vision to think , 1999 .

[16]  Daniel A. Keim,et al.  Designing Pixel-Oriented Visualization Techniques: Theory and Applications , 2000, IEEE Trans. Vis. Comput. Graph..

[17]  Ganesh S. Oak Information Visualization Introduction , 2022 .

[18]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[19]  Pat Hanrahan,et al.  Query, analysis, and visualization of hierarchically structured data using Polaris , 2002, KDD.

[20]  Dominique Laurent,et al.  Computing appropriate representations for multidimensional data , 2003 .

[21]  M. Jarke,et al.  Fundamentals of Data Warehouses , 2003, Springer Berlin Heidelberg.

[22]  Panos Vassiliadis,et al.  Advanced visualization for OLAP , 2003, DOLAP '03.

[23]  Hamid Pirahesh,et al.  Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals , 1996, Data Mining and Knowledge Discovery.

[24]  Anne Laurent,et al.  Summarizing Multidimensional Databases Using Fuzzy Rules , 2004 .

[25]  Arnaud Giacometti,et al.  A personalization framework for OLAP queries , 2005, DOLAP '05.

[26]  Anne Laurent,et al.  Building Fuzzy Blocks from Data Cubes , 2006 .