Comparative Genomics of Plant Chromosomes

Comparative genomics, the study of similarities and differences in structure and function of the hereditary information in different taxa, uses molecular tools to investigate notions that far preceded the discovery that DNA was the hereditary molecule. Vavilov’s (1922) “law of homologous series in variation” was an early suggestion of the possibility of underlying commonality in the genetic blueprints of different (plant) species. In plants, genetic analysis based upon morphological and isozyme markers provided early hints that the arrangements of genes along the chromosomes of various taxa may have retained parallels since their divergence from common ancestors. DNA-level investigations in diverse taxa point to two broad messages: (1) The small but essential portion of most plant genomes encoding genes evolves relatively slowly, with corresponding genes retaining recognizable DNA sequences and similar order along the chromosomes of taxa that have been reproductively-isolated for millions of years. (2) A wide range of factors, such as DNA sequence mobility, gene deletion, and localized rearrangements, are superimposed on the relatively slow tempo of chromosomal evolution and cause many deviations from co-linearity. (3) Genetic loci that account for common phenotypes in different taxa are often at corresponding genomic locations, and may represent orthologous genes or members of orthologous clusters of genes.

[1]  Dubcovsky'and,et al.  Ribosomal RNA Multigene Loci : Nomads of the Triticeae Genomes , 2002 .

[2]  A. Paterson,et al.  Comparative mapping of QTLs determining the plant size of Brassica oleracea , 2001, Theoretical and Applied Genetics.

[3]  T. Delmonte,et al.  An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. , 2000, Genome research.

[4]  A. Paterson,et al.  Locus-specific contig assembly in highly-duplicated genomes, using the BAC-RF method. , 2000, Nucleic acids research.

[5]  T. Delmonte,et al.  QTL analysis of leaf morphology in tetraploid Gossypium (cotton) , 2000, Theoretical and Applied Genetics.

[6]  S. Wessler,et al.  Recent, extensive, and preferential insertion of members of the miniature inverted-repeat transposable element family Heartbreaker into genic regions of maize. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[7]  E. Grotewold,et al.  Maize R2R3 Myb genes: Sequence analysis reveals amplification in the higher plants. , 1999, Genetics.

[8]  T. Sasaki,et al.  Arabidopsis-rice: will colinearity allow gene prediction across the eudicot-monocot divide? , 1999, Genome research.

[9]  D. Cook,et al.  Medicago truncatula--a model in the making! , 1999, Current opinion in plant biology.

[10]  K. Livingstone,et al.  Genome mapping in capsicum and the evolution of genome structure in the solanaceae. , 1999, Genetics.

[11]  J. Bennetzen,et al.  Colinearity and its exceptions in orthologous adh regions of maize and sorghum. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[12]  A. Paterson,et al.  Comparative genetic mapping of allotetraploid cotton and its diploid progenitors , 1999 .

[13]  Jody Hey,et al.  The limits of selection during maize domestication , 1999, Nature.

[14]  Phillip SanMiguel,et al.  Evidence that a Recent Increase in Maize Genome Size was Caused by the Massive Amplification of Intergene Retrotransposons , 1998 .

[15]  S. C. Liu,et al.  Detailed alignment of saccharum and sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. , 1998, Genetics.

[16]  K. Devos,et al.  Plant comparative genetics after 10 years. , 1998, Science.

[17]  P. Lijnzaad,et al.  A physical map of 30,000 human genes. , 1998, Science.

[18]  D. Stelly,et al.  Evolution of interspersed repetitive elements inGossypium (Malvaceae). , 1998, American journal of botany.

[19]  Phillip SanMiguel,et al.  The paleontology of intergene retrotransposons of maize , 1998, Nature Genetics.

[20]  K. El-Zik,et al.  D-subgenome bias of Xcm resistance genes in tetraploid Gossypium (cotton) suggests that polyploid formation has created novel avenues for evolution. , 1998, Genetics.

[21]  M. Matzke,et al.  Polyploidy and transposons. , 1998, Trends in ecology & evolution.

[22]  P. Bork,et al.  Measuring genome evolution. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[23]  A. Paterson,et al.  Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton. , 1998, Genome research.

[24]  K. El-Zik,et al.  Polyploid formation created unique avenues for response to selection in Gossypium (cotton). , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Bennetzen,et al.  Grass genomes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[26]  M. Yano,et al.  Rapid reorganization of resistance gene homologues in cereal genomes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Bennetzen,et al.  Sequence organization and conservation in sh2/a1-homologous regions of sorghum and rice. , 1998, Genetics.

[28]  B. Sobral,et al.  Comparative mapping of Andropogoneae: Saccharum L. (sugarcane) and its relation to sorghum and maize. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[29]  D. Lipman,et al.  A genomic perspective on protein families. , 1997, Science.

[30]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.

[31]  L. Peltonen,et al.  Rare disease genes--lessons and challenges. , 1997, Genome research.

[32]  L. Peltonen,et al.  High-resolution physical and transcriptional mapping of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy locus on chromosome 21q22.3 by FISH. , 1997, Genome research.

[33]  B. Gaut,et al.  DNA sequence evidence for the segmental allotetraploid origin of maize. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[34]  J. Bennetzen,et al.  Microcolinearity in sh2-homologous regions of the maize, rice, and sorghum genomes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J. Bennetzen,et al.  The unified grass genome: synergy in synteny. , 1997, Genome research.

[36]  P. Dufour,et al.  Construction of a composite sorghum genome map and comparison with sugarcane, a related complex polyploid , 1997, Theoretical and Applied Genetics.

[37]  William R. Pearson,et al.  Identifying distantly related protein sequences , 1991, Comput. Appl. Biosci..

[38]  T. Delmonte,et al.  Erratum: Toward a unified genetic map of higher plants, transcending the monocot–dicot divergence , 1997, Nature Genetics.

[39]  T. Delmonte,et al.  Toward a unified genetic map of higher plants, transcending the monocot–dicot divergence , 1996, Nature Genetics.

[40]  U. Lagercrantz,et al.  Comparative genome mapping in Brassica. , 1996, Genetics.

[41]  J. Bennetzen,et al.  Nested Retrotransposons in the Intergenic Regions of the Maize Genome , 1996, Science.

[42]  J. Mudge,et al.  A RAPD Genetic Map of Saccharum officinarum , 1996 .

[43]  D. Zamir,et al.  Less-than-additive epistatic interactions of quantitative trait loci in tomato. , 1996, Genetics.

[44]  M. Sorrells,et al.  Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell.). , 1996, Genome.

[45]  J. Glaszmann,et al.  RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and aneuploid interspecific hybrid. , 1996, Genetics.

[46]  J. Anderson,et al.  Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. , 1995, Genetics.

[47]  Andrew H. Paterson,et al.  Convergent Domestication of Cereal Crops by Independent Mutations at Corresponding Genetic Loci , 1995, Science.

[48]  M. Yano,et al.  Conservation of Duplicated Segments between Rice Chromosome 11 and 12 , 1995 .

[49]  P. Lu,et al.  Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[50]  D. Laurie,et al.  Conservation of fine-scale DNA marker order in the genomes of rice and the Triticeae. , 1995, Nucleic acids research.

[51]  M. Yano,et al.  Rice-barley synteny and its application to saturation mapping of the barley Rpg1 region. , 1995, Nucleic acids research.

[52]  M. Sorrells,et al.  Molecular mapping of wheat. Homoeologous group 3. , 1995, Genome.

[53]  M. Sorrells,et al.  Molecular mapping of wheat. Homoeologous group 2. , 1995, Genome.

[54]  U. Lagercrantz,et al.  RFLP mapping in Brassica nigra indicates differing recombination rates in male and female meioses. , 1995, Genome.

[55]  E. M. Friis,et al.  The origin and early diversification of angiosperms , 1995, Nature.

[56]  J Dvorák,et al.  Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. , 1995, Genome.

[57]  A. Paterson,et al.  A detailed RFLP map of cotton, Gossypium hirsutum x Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. , 1994, Genetics.

[58]  A. Paterson,et al.  Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization. , 1994, Genetics.

[59]  S. Henikoff,et al.  A Reconsideration of the Mechanism of Position Effect , 2002 .

[60]  J. Doebley,et al.  Construction of an RFLP map in sorghum and comparative mapping in maize. , 1994, Genome.

[61]  Yoshiaki Nagamura,et al.  Conservation of Genome Structure Between Rice and Wheat , 1994, Bio/Technology.

[62]  S. Tanksley,et al.  Comparative linkage maps of the rice and maize genomes. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[63]  J. Bennetzen,et al.  Grasses as a single genetic system: genome composition, collinearity and compatibility. , 1993, Trends in genetics : TIG.

[64]  S. Tanksley,et al.  RFLP linkage map and genome analysis of Saccharum spontaneum. , 1993, Genome.

[65]  B. Sobral,et al.  A genetic linkage map of Saccharum spontaneum L. 'SES 208'. , 1993, Genetics.

[66]  U. Lagercrantz,et al.  Mapping the Brassica Genome , 1993 .

[67]  S. Tanksley,et al.  Construction of a molecular linkage map of pepper and a comparison of synteny with tomato. , 1993, Genome.

[68]  Nancy A. Jenkins,et al.  Anchored reference loci for comparative genome mapping in mammals , 1993, Nature Genetics.

[69]  D. Soltis,et al.  Molecular data and the dynamic nature of polyploidy , 1993 .

[70]  J. Doebley,et al.  Comparative genome mapping of Sorghum and maize. , 1992, Genetics.

[71]  G. Martin,et al.  High density molecular linkage maps of the tomato and potato genomes. , 1992, Genetics.

[72]  Y. Chyi,et al.  A genetic linkage map of restriction fragment length polymorphism loci for Brassica rapa (syn. campestris) , 1992 .

[73]  S. Lincoln,et al.  A genetic map for Brassica oleracea based on RFLP markers detected with expressed DNA sequences and mapping of resistance genes to race 2 of Plasmodiophora brassicae (Woronin) , 1992 .

[74]  F. Muehlbauer,et al.  Extensive Conservation of Linkage Relationships Between Pea and Lentil Genetic Maps , 1992 .

[75]  P. Christou,et al.  The development of a variety-independent gene-transfer method for rice , 1992 .

[76]  K. Tsunewaki,et al.  Restriction fragment length polymorphism (RFLP) analysis in wheat. II. Linkage maps of the RFLP sites in common wheat. , 1991, Idengaku zasshi.

[77]  S. Lincoln,et al.  A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences , 1991 .

[78]  W. Gilbert,et al.  How big is the universe of exons? , 1990, Science.

[79]  R. Myers,et al.  Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. , 1990, Science.

[80]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[81]  J. Bennetzen,et al.  Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[82]  S. Tanksley,et al.  Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. , 1990, Genetics.

[83]  S. Karlin,et al.  Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[84]  M. Gouy,et al.  Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[85]  J. Wendel New World tetraploid cottons contain Old World cytoplasm. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[86]  J. Wendel,et al.  Duplicated plastid and triplicated cytosolic isozymes of triosephosphate isomerase in maize (Zea mays L.). , 1989, The Journal of heredity.

[87]  J. Doebley,et al.  ALLOZYME VARIATION IN OLD WORLD RACES OF SORGHUM BICOLOR (POACEAE) , 1989 .

[88]  S. Tanksley,et al.  RFLP Maps Based on a Common Set of Clones Reveal Modes of Chromosomal Evolution in Potato and Tomato. , 1988, Genetics.

[89]  S. Tanksley,et al.  Conservation of gene repertoire but not gene order in pepper and tomato. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[90]  T. Naranjo,et al.  Arm homoeology of wheat and rye chromosomes , 1987 .

[91]  D. Verma,et al.  Structure and chromosomal arrangement of leghemoglobin genes in kidney bean suggest divergence in soybean leghemoglobin gene loci following tetraploidization , 1984, The EMBO journal.

[92]  D. Levin Polyploidy and Novelty in Flowering Plants , 1983, The American Naturalist.

[93]  Hart Ge Genetics and evolution of multilocus isozymes in hexaploid wheat. , 1983 .

[94]  G. Hart Genetics and evolution of multilocus isozymes in hexaploid wheat. , 1983, Isozymes.

[95]  W. Lewis Polyploidy : biological relevance , 1980 .

[96]  S. Goss,et al.  New method for mapping genes in human chromosomes , 1975, Nature.

[97]  I. Al‐Shehbaz The biosystematics of the genus Thelypodium (Cruciferae) , 1973, Contributions from the Gray Herbarium of Harvard University.

[98]  G. Stebbins Chromosomal variation and evolution. , 1966, Science.

[99]  W. Williams Evolution of Crop Plants , 1965, Nature.

[100]  E. Lewis The phenomenon of position effect. , 1950, Advances in genetics.

[101]  Adolf Engler,et al.  Die Natürlichen Pflanzenfamilien , 1906, Botanical Gazette.

[102]  O. Witte,et al.  Stomatal Size in Fossil Plants : Evidence for Polyploidy in Majority of Angiosperms , 2022 .