A uniform semantic proof for cut-elimination and completeness of various first and higher order logics

We present a natural generalization of Girard's (first order) phase semantics of linear logic (Theoret. Comput. Sci. 50 (1987)) to intuitionistic and higher-order phase semantics. Then we show that this semantic framework allows us to derive a uniform semantic proof of the (first order and) higher order cut-elimination theorem (as well as a (first order and) higher order phase-semantic completeness theorem) for various different logical systems at the same time. Our semantic proof works for various different logical systems uniformly in a strong sense (without any change of the argument of proof): it works for both first order and higher order versions and for linear, substructural, and standard logics uniformly, and for both their intuitionistic and classical versions uniformly.

[1]  Martin Hofmann,et al.  Normalization by evaluation for typed lambda calculus with coproducts , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[2]  V. Michele Abrusci Non-commutative intuitionistic linear logic , 1990, Math. Log. Q..

[3]  Jean-Pierre Jouannaud,et al.  A computation model for executable higher-order algebraic specification languages , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[4]  Kazushige Terui,et al.  Completeness Proofs for Linear Logic Based on the Proof Search Method(Preliminary Report)(Type Theory and its Applications to Computer Systems) , 1998 .

[5]  Martin Hofmann,et al.  Categorical Reconstruction of a Reduction Free Normalization Proof , 1995, Category Theory and Computer Science.

[6]  A. Troelstra Lectures on linear logic , 1992 .

[7]  William W. Tait,et al.  Intensional interpretations of functionals of finite type I , 1967, Journal of Symbolic Logic.

[8]  Vincent Danos,et al.  The structure of multiplicatives , 1989, Arch. Math. Log..

[9]  Andre Scedrov,et al.  The Undecidability of Second Order Multiplicative Linear Logic , 1996, Inf. Comput..

[10]  Wilfried Buchholz,et al.  Ein Ausgezeichnetes Modell Für Die Intuitionistische Typenlogik , 1975, Arch. Math. Log..

[11]  Dag Prawitz Hauptsatz for Higher Order Logic , 1968, J. Symb. Log..

[12]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[13]  Mitsuhiro Okada Phase Semantic Cut-Elimination and Normalization Proofs of First- and Higher-Order Linear Logic , 1999, Theor. Comput. Sci..

[14]  A. G. Dragalin,et al.  Cut-Elimination Theorem for Higher-Order Classical Logic: An Intuitionistic Proof , 1987 .

[15]  Max I. Kanovich,et al.  Phase semantics for light linear logic , 2003, Theor. Comput. Sci..

[16]  Mitsuhiro Okada Phase Semantics for Higher Order Completeness, Cut-Elimination and Normalization Proofs , 1996, Electron. Notes Theor. Comput. Sci..

[17]  Kazushige Terui,et al.  The finite model property for various fragments of intuitionistic linear logic , 1999, Journal of Symbolic Logic.

[18]  W. W. Tait,et al.  A nonconstructive proof of Gentzen’s Hauptsatz for second order predicate logic , 1966 .

[19]  A. G. Dragálin A Completeness Theorem for Higher-Order Intuitionistic Logic: An Intuitionistic Proof , 1987 .

[20]  Y. Lafont From proof-nets to interaction nets , 1995 .

[21]  Vincent Danos La Logique Linéaire appliquée à l'étude de divers processus de normalisation (principalement du Lambda-calcul) , 1990 .

[22]  V. Michele Abrusci Sequent Calculus for Intuitionistic Linear Propositional Logic , 1990 .

[23]  J. Girard,et al.  Advances in Linear Logic , 1995 .

[24]  Giovanni Sambin,et al.  Pretopologies and completeness proofs , 1995, Journal of Symbolic Logic.

[25]  Hiroakira Ono,et al.  Logics without the contraction rule , 1985, Journal of Symbolic Logic.

[26]  Jean-Yves Girard,et al.  Linear logic: its syntax and semantics , 1995 .

[27]  Yves Lafont The Finite Model Property for Various Fragments of Linear Logic , 1997, J. Symb. Log..

[28]  A. G. Dragálin Mathematical Intuitionism. Introduction to Proof Theory , 1988 .