A uniform semantic proof for cut-elimination and completeness of various first and higher order logics
暂无分享,去创建一个
[1] Martin Hofmann,et al. Normalization by evaluation for typed lambda calculus with coproducts , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.
[2] V. Michele Abrusci. Non-commutative intuitionistic linear logic , 1990, Math. Log. Q..
[3] Jean-Pierre Jouannaud,et al. A computation model for executable higher-order algebraic specification languages , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.
[4] Kazushige Terui,et al. Completeness Proofs for Linear Logic Based on the Proof Search Method(Preliminary Report)(Type Theory and its Applications to Computer Systems) , 1998 .
[5] Martin Hofmann,et al. Categorical Reconstruction of a Reduction Free Normalization Proof , 1995, Category Theory and Computer Science.
[6] A. Troelstra. Lectures on linear logic , 1992 .
[7] William W. Tait,et al. Intensional interpretations of functionals of finite type I , 1967, Journal of Symbolic Logic.
[8] Vincent Danos,et al. The structure of multiplicatives , 1989, Arch. Math. Log..
[9] Andre Scedrov,et al. The Undecidability of Second Order Multiplicative Linear Logic , 1996, Inf. Comput..
[10] Wilfried Buchholz,et al. Ein Ausgezeichnetes Modell Für Die Intuitionistische Typenlogik , 1975, Arch. Math. Log..
[11] Dag Prawitz. Hauptsatz for Higher Order Logic , 1968, J. Symb. Log..
[12] Jean-Yves Girard,et al. Linear Logic , 1987, Theor. Comput. Sci..
[13] Mitsuhiro Okada. Phase Semantic Cut-Elimination and Normalization Proofs of First- and Higher-Order Linear Logic , 1999, Theor. Comput. Sci..
[14] A. G. Dragalin,et al. Cut-Elimination Theorem for Higher-Order Classical Logic: An Intuitionistic Proof , 1987 .
[15] Max I. Kanovich,et al. Phase semantics for light linear logic , 2003, Theor. Comput. Sci..
[16] Mitsuhiro Okada. Phase Semantics for Higher Order Completeness, Cut-Elimination and Normalization Proofs , 1996, Electron. Notes Theor. Comput. Sci..
[17] Kazushige Terui,et al. The finite model property for various fragments of intuitionistic linear logic , 1999, Journal of Symbolic Logic.
[18] W. W. Tait,et al. A nonconstructive proof of Gentzen’s Hauptsatz for second order predicate logic , 1966 .
[19] A. G. Dragálin. A Completeness Theorem for Higher-Order Intuitionistic Logic: An Intuitionistic Proof , 1987 .
[20] Y. Lafont. From proof-nets to interaction nets , 1995 .
[21] Vincent Danos. La Logique Linéaire appliquée à l'étude de divers processus de normalisation (principalement du Lambda-calcul) , 1990 .
[22] V. Michele Abrusci. Sequent Calculus for Intuitionistic Linear Propositional Logic , 1990 .
[23] J. Girard,et al. Advances in Linear Logic , 1995 .
[24] Giovanni Sambin,et al. Pretopologies and completeness proofs , 1995, Journal of Symbolic Logic.
[25] Hiroakira Ono,et al. Logics without the contraction rule , 1985, Journal of Symbolic Logic.
[26] Jean-Yves Girard,et al. Linear logic: its syntax and semantics , 1995 .
[27] Yves Lafont. The Finite Model Property for Various Fragments of Linear Logic , 1997, J. Symb. Log..
[28] A. G. Dragálin. Mathematical Intuitionism. Introduction to Proof Theory , 1988 .