Fabrication of three-dimensional WO3/ZnWO4/ZnO multiphase heterojunction system with electron storage capability for significantly enhanced photoinduced cathodic protection performance

[1]  Zhuoyuan Chen,et al.  Significantly enhanced photocatalytic hydrogen production performance of g-C3N4/CNTs/CdZnS with carbon nanotubes as the electron mediators , 2021, Journal of Materials Science & Technology.

[2]  Zhuoyuan Chen,et al.  Synergistic effect of hierarchical structure and Z-scheme heterojunction constructed by CdS nanoparticles and nanoflower-structured Co9S8 with significantly enhanced photocatalytic hydrogen production performance , 2021 .

[3]  B. Hou,et al.  Covalent Organic Framework Decorated TiO2 Nanotube Arrays for Photoelectrochemical Cathodic Protection of Steel , 2020 .

[4]  Zhuoyuan Chen,et al.  High-efficiency photoelectrochemical cathodic protection performance of the TiO2/AgInSe2/In2Se3 multijunction nanosheet array , 2020 .

[5]  Zhuoyuan Chen,et al.  Synthesis of a novel three-dimensional sponge-like microporous CdS film with high photoelectrochemical performance and stability , 2020 .

[6]  V. S. Saji Review—Photoelectrochemical Cathodic Protection in The Dark: A Review of Nanocomposite and Energy-Storing Photoanodes , 2020 .

[7]  L. Du,et al.  Effects of alkali ion on boosting WO3 photoelectrochemical performance by electrochemical doping , 2020 .

[8]  Xiaohong Jiang,et al.  Magnesium and fluoride doped hydroxyapatite coatings grown by pulsed laser deposition for promoting titanium implant cytocompatibility , 2020, Applied Surface Science.

[9]  Q. Cao,et al.  ALD-based hydrothermal facile synthesis of a dense WO3@TiO2–Fe2O3 nanodendrite array with enhanced photoelectrochemical properties , 2020 .

[10]  Zhuoyuan Chen,et al.  The photocatalytic phenol degradation mechanism of Ag-modified ZnO nanorods , 2020 .

[11]  Y. F. Cheng,et al.  Visible light illuminated high-performance WO3-TiO2-BiVO4 nanocomposite photoanodes capable of energy self-storage for photo-induced cathodic protection , 2020 .

[12]  Jiujun Zhang,et al.  Novel diverse-structured h-WO3 nanoflake arrays as electrode materials for high performance supercapacitors , 2020 .

[13]  D. P. Ojha,et al.  Investigation of photocatalytic activity of ZnO promoted hydrothermally synthesized ZnWO4 nanorods in UV–visible light irradiation , 2020 .

[14]  Zhuoyuan Chen,et al.  A novel TiO2 nanotube arrays/MgTixOy multiphase-heterojunction film with high efficiency for photoelectrochemical cathodic protection , 2020 .

[15]  A. Simchi,et al.  Effect of Photoelectrochemical Activity of ZnO-Graphene Thin Film on the Corrosion of Carbon Steel and 304 Stainless Steel , 2020, Journal of Materials Engineering and Performance.

[16]  Qinghong Zhang,et al.  Visible Light-driven Cleavage of C-O Linkage for Lignin Valorization to Functionalized Aromatics. , 2019, ChemSusChem.

[17]  Xiaomeng Wang,et al.  Ag2S decorated TiO2 nanosheets grown on carbon fibers for photoelectrochemical protection of 304 stainless steel , 2019, Applied Surface Science.

[18]  M. Aparicio,et al.  Sodium ion storage performance of magnetron sputtered WO3 thin films , 2019, Electrochimica Acta.

[19]  Lun Pan,et al.  Controllable fabrication of homogeneous ZnO p-n junction with enhanced charge separation for efficient photocatalysis , 2019, Catalysis Today.

[20]  Zhao‐Qing Liu,et al.  3D cross-linked BiOI decorated ZnO/CdS nanorod arrays: A cost-effective hydrogen evolution photoanode with high photoelectrocatalytic activity , 2019, International Journal of Hydrogen Energy.

[21]  T. He,et al.  Photocatalytic activities of ZnWO4 and Bi@ZnWO4 nanorods , 2019, Applied Surface Science.

[22]  Nithyadharseni Palaniyandy,et al.  A review on ZnO nanostructured materials: energy, environmental and biological applications , 2019, Nanotechnology.

[23]  Yishan Wang,et al.  Electron-transfer cascade from CdSe@ZnSe core-shell quantum dot accelerates photoelectrochemical H2 evolution on TiO2 nanotube arrays , 2019, Journal of Catalysis.

[24]  H. Cui,et al.  Porous ZnO Ultrathin Nanosheets with High Specific Surface Areas and Abundant Oxygen Vacancies for Acetylacetone Gas Sensing. , 2019, ACS applied materials & interfaces.

[25]  Y. F. Cheng,et al.  Preparation of Co3O4@ZnO core-shell nanocomposites with intrinsic p-n junction as high-performance photoelectrodes for photoelectrochemical cathodic protection under visible light , 2019, Applied Surface Science.

[26]  Yuyu Bu,et al.  Significantly enhanced photoelectrochemical cathodic protection performance of hydrogen treated Cr-doped SrTiO3 by Cr6+ reduction and oxygen vacancy modification , 2019, Electrochimica Acta.

[27]  G. Wang,et al.  Hierarchical WO3/ZnWO4 1D fibrous heterostructures with tunable in-situ growth of WO3 nanoparticles on surface for efficient low concentration HCHO detection , 2019, Sensors and Actuators B: Chemical.

[28]  Jie Yuan,et al.  A visualizable means for verifying the manner of charge transfer in WO3-based type-II heterostructures. , 2019, Nanoscale.

[29]  Yueping Fang,et al.  ZnO/CdS/PbS nanotube arrays with multi-heterojunctions for efficient visible-light-driven photoelectrochemical hydrogen evolution , 2019, Chemical Engineering Journal.

[30]  Liang Li,et al.  Tungsten Trioxide Nanostructures for Photoelectrochemical Water Splitting: Material Engineering and Charge Carrier Dynamic Manipulation , 2019, Advanced Functional Materials.

[31]  Qingliang Liao,et al.  Interface Engineering for Modulation of Charge Carrier Behavior in ZnO Photoelectrochemical Water Splitting , 2019, Advanced Functional Materials.

[32]  Baodan Liu,et al.  In-situ synthesis of TiO2 nanostructures on Ti foil for enhanced and stable photocatalytic performance , 2019, Journal of Materials Science & Technology.

[33]  G. Saratale,et al.  Zinc oxide superstructures: Recent synthesis approaches and application for hydrogen production via photoelectrochemical water splitting , 2019, International Journal of Hydrogen Energy.

[34]  H. Tan,et al.  Designed growth of WO3/PEDOT core/shell hybrid nanorod arrays with modulated electrochromic properties , 2019, Chemical Engineering Journal.

[35]  Jong Hyeok Park,et al.  Disordered layers on WO3 nanoparticles enable photochemical generation of hydrogen from water , 2019, Journal of Materials Chemistry A.

[36]  B. Hou,et al.  Sb2S3/Sb2O3 modified TiO2 photoanode for photocathodic protection of 304 stainless steel under visible light , 2018, Applied Surface Science.

[37]  G. Song,et al.  Enhanced photoelectrochemical performances of ZnS-Bi2S3/TiO2/WO3 composite film for photocathodic protection , 2018, Corrosion Science.

[38]  Jennifer D Lee,et al.  Photocatalytic Hydrogen Evolution from Substoichiometric Colloidal WO3–x Nanowires , 2018 .

[39]  Y. F. Cheng,et al.  One-step facile preparation of ZnO nanorods as high-performance photoanodes for photoelectrochemical cathodic protection , 2018, Electrochimica Acta.

[40]  Juan Hu,et al.  Fabrication of heterostructured β-Bi2O3-TiO2 nanotube array composite film for photoelectrochemical cathodic protection applications , 2018 .

[41]  Weibing Li,et al.  Dual-functional ZnxMg1-xO solid solution nanolayer modified ZnO tussock-like nanorods with improved photoelectrochemical anti-corrosion performance , 2018 .

[42]  Zhuoyuan Chen,et al.  Enhanced visible light-driven activity of TiO2 nanotube array photoanode co-sensitized by "green" AgInS2 photosensitizer and In2S3 buffer layer , 2018 .

[43]  C. H. Bhosale,et al.  A highly efficient visible-light responsive sprayed WO3/FTO photoanode for photoelectrocatalytic degradation of brilliant blue , 2018 .

[44]  Fu-hui Wang,et al.  Long-Term Photoelectrochemical Cathodic Protection by Co(OH)2-Modified TiO2 on 304 Stainless Steel in Marine Environment , 2018 .

[45]  Yuyu Bu,et al.  Study of the photoelectrochemical cathodic protection mechanism for steel based on the SrTiO3-TiO2 composite , 2018 .

[46]  J. Chen,et al.  Efficient promotion of charge transfer and separation in hydrogenated TiO2/WO3 with rich surface-oxygen-vacancies for photodecomposition of gaseous toluene. , 2018, Journal of hazardous materials.

[47]  D. Sarma,et al.  Hexagonal WO3Nanorods as Ambipolar Electrode Material in Asymmetric WO3//WO3/MnO2Supercapacitor , 2018 .

[48]  Hongwei Wang,et al.  Control the energy band potential of ZnMgO solid solution with enhanced photocatalytic hydrogen evolution capacity , 2017 .

[49]  David-Wei Zhang,et al.  Synthesis of WO3@ZnWO4@ZnO-ZnO hierarchical nanocactus arrays for efficient photoelectrochemical water splitting , 2017 .

[50]  Yuyu Bu,et al.  A review on photoelectrochemical cathodic protection semiconductor thin films for metals , 2017 .

[51]  M. Godlewski,et al.  ZnO/Si heterojunction solar cell fabricated by atomic layer deposition and hydrothermal methods , 2017 .

[52]  Han Guo,et al.  Constructing ternary polyaniline-graphene-TiO2 hybrids with enhanced photoelectrochemical performance in photo-generated cathodic protection , 2017 .

[53]  M. Zhong,et al.  Large-Scale Tunable 3D Self-Supporting WO3 Micro-Nano Architectures as Direct Photoanodes for Efficient Photoelectrochemical Water Splitting. , 2017, ACS applied materials & interfaces.

[54]  Bingsen Zhang,et al.  Synthesis of pearl necklace-like ZnO–ZnWO4 heterojunctions with enhanced photocatalytic degradation of Rhodamine B , 2017 .

[55]  R. Du,et al.  Enhanced photoelectrochemical anticorrosion performance of WO3/TiO2 nanotube composite films formed by anodization and electrodeposition , 2017 .

[56]  J. Liang,et al.  Enhancement of photoelectrochemical and photocathodic protection properties of TiO2 nanotube arrays by simple surface UV treatment , 2017 .

[57]  Song Ma,et al.  利用Ni(OH) x 助催化剂修饰提高g-C 3 N 4 纳米片/WO 3 纳米棒Z型纳米体系的可见光产氢活性的研究 , 2017 .

[58]  Jianfeng Huang,et al.  In situ synthesis and photocatalytic performance of WO3/ZnWO4 composite powders , 2016 .

[59]  Yuyu Bu,et al.  Photoelectrochemical Cathodic Protection Induced from Nanoflower-Structured WO3 Sensitized with CdS Nanoparticles , 2016 .

[60]  Q. Liu,et al.  Preparation of MoO3/TiO2 Composite Films and Their Application in Photoelectrochemical Anticorrosion , 2016 .

[61]  E. Xie,et al.  Synergistic effects in three-dimensional SnO2/TiO2/CdS multi-heterojunction structure for highly efficient photoelectrochemical hydrogen production , 2015 .

[62]  Yuyu Bu,et al.  Effect of ZnO on the corrosion of zinc, Q235 carbon steel and 304 stainless steel under white light illumination , 2014 .

[63]  Jing Li,et al.  A Photoelectrochemical Study of Highly Ordered TiO2 Nanotube Arrays as the Photoanodes for Cathodic Protection of 304 Stainless Steel , 2011 .

[64]  Jing Li,et al.  A Photoelectrochemical Study of n-Doped TiO2 Nanotube Arrays as the Photoanodes for Cathodic Protection of SS , 2007 .

[65]  A. Fujishima,et al.  TiO2−WO3 Photoelectrochemical Anticorrosion System with an Energy Storage Ability , 2001 .