Random Sets : Unification and Computation for Information Fusion — A Retrospective Assessment

The author introduced the key ideas of finite-set statistics (FISST) between 1994 and 1996, as a means of theoretically unifying the major aspects of information fusion under a single probabilistic umbrella. FISST has been considerably extended and refined since that time, especially in regard to the development of principled approximation strategies. For the last several years FISST has been and is being applied to a number of practical applied-research problems. Several research teams around the world are currently investigating FISST techniques. The purpose of this keynote paper is to provide a retrospective assessment of the last decade of random set information fusion research: its antecedents; its techniques, tools, conceptual evolution, and current state of the art; its applications; its critics and imitators; and its possible future directions.

[1]  Thiagalingam Kirubarajan,et al.  Data association combined with the probability hypothesis density filter for multitarget tracking , 2004, SPIE Defense + Commercial Sensing.

[2]  David J. Salmond,et al.  A novel MCMC tracker for stressing scenarios , 2004, SPIE Defense + Commercial Sensing.

[3]  Peter S. Shoenfeld A particle filter algorithm for the multi-target probability hypothesis density , 2004, SPIE Defense + Commercial Sensing.

[4]  Ba-Ngu Vo,et al.  Probability hypothesis density filter versus multiple hypothesis tracking , 2004, SPIE Defense + Commercial Sensing.

[5]  Aaron D. Lanterman,et al.  Multitarget tracking using multiple bistatic range measurements with probability hypothesis densities , 2004, SPIE Defense + Commercial Sensing.

[6]  Ronald P. S. Mahler Bayesian versus 'plain-vanilla Bayesian' multitarget statistics , 2004, SPIE Defense + Commercial Sensing.

[7]  Ronald P. S. Mahler Target preference in multitarget sensor management: a unified approach , 2004, SPIE Defense + Commercial Sensing.

[8]  Ronald P. S. Mahler,et al.  Multisensor-multitarget sensor management with target preference , 2004, SPIE Defense + Commercial Sensing.

[9]  Ronald Mahler,et al.  MULTITARGET SENSOR MANAGEMENT OF DISPERSED MOBILE SENSORS , 2004 .

[10]  Panos M. Pardalos,et al.  Theory and algorithms for cooperative systems , 2004 .

[11]  Ronald P. S. Mahler,et al.  Multitarget miss distance via optimal assignment , 2004, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[12]  R.P.S. Mahler,et al.  "Statistics 101" for multisensor, multitarget data fusion , 2004, IEEE Aerospace and Electronic Systems Magazine.

[13]  Ronald Mahler,et al.  Sensor Management with Non-Ideal Sensor Dynamics , 2004 .

[14]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[15]  R. Mahler,et al.  Unified Bayes multitarget fusion of ambiguous data sources , 2003, IEMC '03 Proceedings. Managing Technologically Driven Organizations: The Human Side of Innovation and Change (IEEE Cat. No.03CH37502).

[16]  Kevin J. Sullivan,et al.  Particle filtering algorithm for tracking multiple road-constrained targets , 2003, SPIE Defense + Commercial Sensing.

[17]  Ronald P. S. Mahler,et al.  Robust SAR ATR via set-valued classifiers: new results , 2003, SPIE Defense + Commercial Sensing.

[18]  Mark R. Morelande,et al.  A multitarget tracking algorithm based on random sets , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[19]  Hedvig Kjellström,et al.  Tracking Random Sets of Vehicles in Terrain , 2003, 2003 Conference on Computer Vision and Pattern Recognition Workshop.

[20]  Hedvig Sidenbladh,et al.  Multi-target particle filtering for the probability hypothesis density , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[21]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[22]  Ronald P. S. Mahler,et al.  Extended first-order Bayes filter for force aggregation , 2002, SPIE Defense + Commercial Sensing.

[23]  Ronald P. S. Mahler Point target-clusters and continuous-state multitarget statistics , 2002, SPIE Defense + Commercial Sensing.

[24]  B. Vo,et al.  Bayesian approaches to track existence - IPDA and random sets , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[25]  A. Doucet,et al.  Particle filtering for multi-target tracking and sensor management , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[26]  William Fitzgerald,et al.  A Bayesian approach to tracking multiple targets using sensor arrays and particle filters , 2002, IEEE Trans. Signal Process..

[27]  Patrick Pérez,et al.  Sequential Monte Carlo methods for multiple target tracking and data fusion , 2002, IEEE Trans. Signal Process..

[28]  Ronald Mahler,et al.  None-of-the-above (NOTA) capability for INTELL-based NCTI , 2001, SPIE Defense + Commercial Sensing.

[29]  Michael Isard,et al.  BraMBLe: a Bayesian multiple-blob tracker , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[30]  Ronald P. S. Mahler,et al.  Random Set Theory for Target Tracking and Identification , 2001 .

[31]  Ronald Mahler,et al.  Multitarget Moments and their Application to Multitarget Tracking , 2001 .

[32]  M. Kouritzin,et al.  A Branching Particle-based Nonlinear Filter for Multi-target Tracking , 2001 .

[33]  Olaf Wolkenhauer,et al.  Random-sets: theory and applications , 2001 .

[34]  Ronald P. S. Mahler,et al.  Scientific performance evaluation for sensor management , 2000, SPIE Defense + Commercial Sensing.

[35]  Oliver E. Drummond,et al.  Performance metrics for multiple-sensor multiple-target tracking , 2000, SPIE Defense + Commercial Sensing.

[36]  K. Kastella A microdensity approach to multitarget tracking , 2000, Proceedings of the Third International Conference on Information Fusion.

[37]  Lawrence D. Stone,et al.  Bayesian Multiple Target Tracking , 1999 .

[38]  Ronald P. S. Mahler,et al.  Nonlinear filtering with really bad data , 1999, Defense, Security, and Sensing.

[39]  Ronald P. S. Mahler,et al.  Global posterior densities for sensor management , 1998, Defense, Security, and Sensing.

[40]  Keith D. Kastella,et al.  Practical implementation of joint multitarget probabilities , 1998, Defense, Security, and Sensing.

[41]  Ronald P. S. Mahler,et al.  Measurement models for ambiguous evidence using conditional random sets , 1997, Defense, Security, and Sensing.

[42]  I. R. Goodman,et al.  Mathematics of Data Fusion , 1997 .

[43]  N. Portenko,et al.  On optimal filtering of multitarget tracking systems based on point processes observations , 1997 .

[44]  Ronald P. S. Mahler,et al.  The modified Dempster-Shafer approach to classification , 1997, IEEE Trans. Syst. Man Cybern. Part A.

[45]  Yurij S. Kharin Robustness in Statistical Pattern Recognition , 1996 .

[46]  Ronald Mahler,et al.  Representing rules as random sets, II: Iterated rules , 1996, Int. J. Intell. Syst..

[47]  Ronald P. S. Mahler,et al.  Representing Rules as Random Sets, I: Statistical Correlations between Rules , 1996, Inf. Sci..

[48]  Ronald P. S. Mahler Combining ambiguous evidence with respect to ambiguous a priori knowledge. I. Boolean logic , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[49]  Ronald P. S. Mahler,et al.  Combining ambiguous evidence with respect to ambiguous a priori knowledge. Part II: Fuzzy logic , 1995, Fuzzy Sets Syst..

[50]  Hung T. Nguyen,et al.  Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference , 1994 .

[51]  Michael I. Miller,et al.  Jump-diffusion processes for the automated understanding of FLIR scenes , 1994, Defense, Security, and Sensing.

[52]  R. E. Bethel,et al.  A PDF multitarget tracker , 1994 .

[53]  Yaakov Bar-Shalom,et al.  Estimation and Tracking: Principles, Techniques, and Software , 1993 .

[54]  Jürg Kohlas SUPPORT- AND PLAUSIBILITY FUNCTIONS INDUCED BY FILTER-VALUED MAPPINGS , 1993 .

[55]  Takashi Matsuyama,et al.  Random Closed Sets: a Unified Approach to the Representation of Imprecision and Uncertainty , 1991, ECSQARU.

[56]  Joseph Albert,et al.  Algebraic Properties of Bag Data Types , 1991, VLDB.

[57]  Didier Dubois,et al.  Random sets and fuzzy interval analysis , 1991 .

[58]  Rudolf Kruse,et al.  Uncertainty and Vagueness in Knowledge Based Systems , 1991, Artificial Intelligence.

[59]  Donald L. Snyder,et al.  Random Point Processes in Time and Space , 1991 .

[60]  Peter Breeze,et al.  Point Processes and Their Statistical Inference , 1991 .

[61]  R.B. Washburn A Random Point Process Approach to Multiobject Tracking , 1987, 1987 American Control Conference.

[62]  S. Mori,et al.  Tracking and classifying multiple targets without a priori identification , 1986 .

[63]  Hung T. Nguyen,et al.  Uncertainty Models for Knowledge-Based Systems; A Unified Approach to the Measurement of Uncertainty , 1985 .

[64]  M. Baudin Multidimensional point processes and random closed sets , 1984, Journal of Applied Probability.

[65]  J. Naylor,et al.  Applications of a Method for the Efficient Computation of Posterior Distributions , 1982 .

[66]  Siegfried Graf A Radon-Nikodym theorem for capacities. , 1980 .

[67]  Brian D. Ripley,et al.  Locally Finite Random Sets: Foundations for Point Process Theory , 1976 .

[68]  G. Matheron Random Sets and Integral Geometry , 1976 .

[69]  Van Trees,et al.  Detection, Estimation, and Modulation Theory. Part 1 - Detection, Estimation, and Linear Modulation Theory. , 1968 .

[70]  J. E. Moyal The general theory of stochastic population processes , 1962 .