A note on the correctness of the causal ordering algorithm

In this paper we examine in detail the algorithm of Simon [H.A. Simon, Causal ordering and identifiability, in: W.C. Hood, T.C. Koopmans (Eds.), Studies in Econometric Method. Cowles Commission for Research in Economics, Monograph No. 14, John Wiley & Sons, Inc., New York, 1953, pp. 49-74, Chapter III], called the causal ordering algorithm (COA), used for constructing the ''causal ordering'' of a system given a complete specification of the system in terms of a set of ''structural'' equations that govern the variables in the system. This algorithm constructs a graphical characterization of the model in a form that we call a partial causal graph. Simon argued in [H.A. Simon, Causal ordering and identifiability, in: W.C. Hood, T.C. Koopmans (Eds.), Studies in Econometric Method. Cowles Commission for Research in Economics, Monograph No. 14, John Wiley & Sons, Inc., New York, 1953, pp. 49-74, Chapter III] and subsequent papers that a graph so generated explicates causal structure among variables in the model. We formalize this claim further by proving that any causal model based on a one-to-one correspondence between equations and variables must be consistent with the COA.

[1]  P. Pandurang Nayak,et al.  Causal Approximations , 1992, Artif. Intell..

[2]  Ronald G. Stansfield,et al.  Sociological Methodology 1982 , 1983 .

[3]  R. Pons Causal or-dering for multiple mode systems , 1997 .

[4]  Denver Dash,et al.  Restructuring Dynamic Causal Systems in Equilibrium , 2005, AISTATS.

[5]  Marek J. Druzdzel,et al.  Caveats for Causal Reasoning with Equilibrium Models , 2001, ECSQARU.

[6]  Brian C. Williams,et al.  Qualitative Analysis of MOS Circuits , 1984, Artif. Intell..

[7]  Herbert A. Simon,et al.  Nonmonotonic Reasoning and Causation: Comment , 1991, Cogn. Sci..

[8]  Marek J. Druzdzel,et al.  Causal reversibility in Bayesian networks , 2001, J. Exp. Theor. Artif. Intell..

[9]  Gregory F. Cooper,et al.  A Bayesian Method for the Induction of Probabilistic Networks from Data , 1992 .

[10]  Judea Pearl,et al.  A Theory of Inferred Causation , 1991, KR.

[11]  Robert Milne,et al.  Dimensional analysis based causal ordering. , 1999 .

[12]  R. H. Strotz,et al.  RECURSIVE VS. NONRECURSIVE SYSTEMS: AN ATTEMPT AT SYNTHESIS (PART I OF A TRIPTYCH ON CAUSAL CHAIN SYSTEMS) , 1960 .

[13]  T. Speed,et al.  Structural Analysis of Multivariate Data: A Review , 1982 .

[14]  Franz von Kutschera,et al.  Causation , 1993, J. Philos. Log..

[15]  A. Goldberger STRUCTURAL EQUATION METHODS IN THE SOCIAL SCIENCES , 1972 .

[16]  Jan L. Top,et al.  Computational and Physical Causality , 1991, IJCAI.

[17]  C. Granger Investigating causal relations by econometric models and cross-spectral methods , 1969 .

[18]  H. Simon,et al.  Spurious Correlation: A Causal Interpretation* , 1954 .

[19]  Herbert A. Simon,et al.  Causality in Device Behavior , 1989, Artif. Intell..

[20]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[21]  P. Spirtes,et al.  An Algorithm for Fast Recovery of Sparse Causal Graphs , 1991 .

[22]  H. Wold Causality and Econometrics , 1954 .

[23]  T. Haavelmo The Statistical Implications of a System of Simultaneous Equations , 1943 .

[24]  P. Spirtes,et al.  Causation, prediction, and search , 1993 .

[25]  Herbert A. Simon,et al.  Theories of causal ordering: reply to de Kleer and Brown , 1989 .

[26]  J. Pearl Causal diagrams for empirical research , 1995 .

[27]  N. Wermuth,et al.  Graphical and recursive models for contingency tables , 1983 .

[28]  H. Simon,et al.  Causal Ordering and Identifiability , 1977 .

[29]  David C. Wilkins,et al.  The Refinement of Probabilistic Rule Sets: Sociopathic Interactions , 1994, Artif. Intell..

[30]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[31]  T. Speed,et al.  Recursive causal models , 1984, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[32]  N. Wermuth Linear Recursive Equations, Covariance Selection, and Path Analysis , 1980 .

[33]  S. Wright The Method of Path Coefficients , 1934 .

[34]  Johan de Kleer,et al.  Theories of Causal Ordering , 1986, Artif. Intell..

[35]  Brian C. Williams,et al.  Reasoning about Multiple Faults , 1986, AAAI.

[36]  Tze-Yun Leong,et al.  Causal Mechanism-based Model Constructions , 2000, UAI.

[37]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[38]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[39]  Herbert A. Simon,et al.  Causality in Bayesian Belief Networks , 1993, UAI.

[40]  中園 薫 A Qualitative Physics Based on Confluences , 1986 .