Latent Semantic Rational Kernels for Topic Spotting on Conversational Speech

In this work, we propose latent semantic rational kernels (LSRK) for topic spotting on conversational speech. Rather than mapping the input weighted finite-state transducers (WFSTs) onto a high dimensional n-gram feature space as in n-gram rational kernels, the proposed LSRK maps the WFSTs onto a latent semantic space. With the proposed LSRK, all available external knowledge and techniques can be flexibly integrated into a unified WFST based framework to boost the topic spotting performance. We present how to generalize the LSRK using tf-idf weighting, latent semantic analysis, WordNet and probabilistic topic models. To validate the proposed LSRK framework, we conduct the topic spotting experiments on two datasets, Switchboard and AT&T HMIHY0300 initial collection. The experimental results show that with the proposed LSRK we can achieve significant and consistent topic spotting performance gains over the n-gram rational kernels.

[1]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[2]  Mehryar Mohri,et al.  Rational Kernels: Theory and Algorithms , 2004, J. Mach. Learn. Res..

[3]  Nello Cristianini,et al.  Latent Semantic Kernels , 2001, Journal of Intelligent Information Systems.

[4]  Jonathan Foote,et al.  An overview of audio information retrieval , 1999, Multimedia Systems.

[5]  Giuseppe Riccardi,et al.  Automatic acquisition of salient grammar fragments for call-type classification , 1997, EUROSPEECH.

[6]  David Haussler,et al.  Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.

[7]  Zuhair Bandar,et al.  Sentence similarity based on semantic nets and corpus statistics , 2006, IEEE Transactions on Knowledge and Data Engineering.

[8]  Daniel Povey,et al.  The Kaldi Speech Recognition Toolkit , 2011 .

[9]  Fernando Pereira,et al.  Weighted finite-state transducers in speech recognition , 2002, Comput. Speech Lang..

[10]  Biing-Hwang Juang,et al.  Latent semantic rational kernels for topic spotting on spontaneous conversational speech , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[11]  Marilyn A. Walker,et al.  A Boosting Approach to Topic Spotting on Subdialogues , 2000, ICML.

[12]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[13]  W. Bruce Croft,et al.  LDA-based document models for ad-hoc retrieval , 2006, SIGIR.

[14]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.

[15]  SaltonGerard,et al.  Term-weighting approaches in automatic text retrieval , 1988 .

[16]  David W. Conrath,et al.  Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy , 1997, ROCLING/IJCLCLP.

[17]  Éric Gaussier,et al.  Relation between PLSA and NMF and implications , 2005, SIGIR '05.

[18]  Mehryar Mohri,et al.  Lattice kernels for spoken-dialog classification , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[19]  Thomas Hofmann,et al.  Learning the Similarity of Documents: An Information-Geometric Approach to Document Retrieval and Categorization , 1999, NIPS.

[20]  Giuseppe Riccardi,et al.  How may I help you? , 1997, Speech Commun..

[21]  Ted Pedersen,et al.  WordNet::Similarity - Measuring the Relatedness of Concepts , 2004, NAACL.

[22]  Timothy J. Hazen,et al.  Topic identification from audio recordings using word and phone recognition lattices , 2007, 2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU).

[23]  George A. Miller,et al.  Introduction to WordNet: An On-line Lexical Database , 1990 .

[24]  Michael J. Carey,et al.  Improved topic spotting through statistical modelling of keyword dependencies , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[25]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[26]  Dekang Lin,et al.  An Information-Theoretic Definition of Similarity , 1998, ICML.

[27]  Martha Palmer,et al.  Verb Semantics and Lexical Selection , 1994, ACL.

[28]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Analysis , 1999, UAI.

[29]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[30]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..