Time‐domain principal component reconstruction (tPCR): A more efficient and stable iterative reconstruction framework for non‐Cartesian functional MRI

To improve the reconstruction efficiency (i.e., computational load) and stability of iterative reconstruction for non‐Cartesian fMRI when using high undersampling rates and/or in the presence of strong off‐resonance effects.

[1]  G. Glover Overview of functional magnetic resonance imaging. , 2011, Neurosurgery clinics of North America.

[2]  Andreas Schulze-Bonhage,et al.  Negative BOLD in default-mode structures measured with EEG-MREG is larger in temporal than extra-temporal epileptic spikes , 2014, Front. Neurosci..

[3]  Douglas C. Noll Rapid MR image acquisition in the presence of background gradients , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[4]  Ahmed H. Tewfik,et al.  Under-sampled functional MRI using low-rank plus sparse matrix decomposition , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[5]  Mark W. Woolrich,et al.  Resting-state fMRI in the Human Connectome Project , 2013, NeuroImage.

[6]  Justin P. Haldar,et al.  Spatiotemporal imaging with partially separable functions: A matrix recovery approach , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[7]  Laura D. Lewis,et al.  Fast fMRI can detect oscillatory neural activity in humans , 2016, Proceedings of the National Academy of Sciences.

[8]  Andreas Schulze-Bonhage,et al.  Fast fMRI provides high statistical power in the analysis of epileptic networks , 2014, NeuroImage.

[9]  Stephen M. Smith,et al.  Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging , 2010, PloS one.

[10]  X. Hu,et al.  Simulated phase evolution rewinding (SPHERE): A technique for reducing B0 inhomogeneity effects in MR images , 1997, Magnetic resonance in medicine.

[11]  M. Lustig,et al.  SPIRiT: Iterative self‐consistent parallel imaging reconstruction from arbitrary k‐space , 2010, Magnetic resonance in medicine.

[12]  Peter M. Jakob,et al.  Accelerated Dynamic Imaging by Reconstructing Sparse Differences using Compressed Sensing , 2008 .

[13]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[14]  Lothar R. Schad,et al.  Fast and Robust Design of Time-Optimal k-Space Trajectories in MRI , 2015, IEEE Transactions on Medical Imaging.

[15]  Jürgen Hennig,et al.  Fast imaging for mapping dynamic networks , 2017, NeuroImage.

[16]  Michael Elad,et al.  ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA , 2014, Magnetic resonance in medicine.

[17]  Jürgen Hennig,et al.  Enhanced subject‐specific resting‐state network detection and extraction with fast fMRI , 2017, Human brain mapping.

[18]  T. Hohage,et al.  Image reconstruction by regularized nonlinear inversion—Joint estimation of coil sensitivities and image content , 2008, Magnetic resonance in medicine.

[19]  Jürgen Hennig,et al.  Ultra-fast magnetic resonance encephalography of physiological brain activity – Glymphatic pulsation mechanisms? , 2016, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[20]  Daniel K Sodickson,et al.  Low‐rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components , 2015, Magnetic resonance in medicine.

[21]  J. Polimeni,et al.  Physiological noise reduction using volumetric functional magnetic resonance inverse imaging , 2012, Human brain mapping.

[22]  Jürgen Hennig,et al.  Tracking dynamic resting-state networks at higher frequencies using MR-encephalography , 2013, NeuroImage.

[23]  Bradley P. Sutton,et al.  Physics based iterative reconstruction for MRI: Compensating and estimating field inhomogeneity and T*(2) relaxation. , 2003 .

[24]  Maxim Zaitsev,et al.  Single shot concentric shells trajectories for ultra fast fMRI , 2012, Magnetic resonance in medicine.

[25]  Mark D'Esposito,et al.  Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses , 2004, NeuroImage.

[26]  Jean Gotman,et al.  Increased sensitivity of fast BOLD fMRI with a subject-specific hemodynamic response function and application to epilepsy , 2014, NeuroImage.

[27]  Kay Nehrke,et al.  k‐t PCA: Temporally constrained k‐t BLAST reconstruction using principal component analysis , 2009, Magnetic resonance in medicine.

[28]  Maxim Zaitsev,et al.  Enhancement of temporal resolution and BOLD sensitivity in real-time fMRI using multi-slab echo-volumar imaging , 2012, NeuroImage.

[29]  Markus Barth,et al.  Generalized iNverse imaging (GIN): Ultrafast fMRI with physiological noise correction , 2013, Magnetic resonance in medicine.

[30]  Maxim Zaitsev,et al.  Fast Undersampled Functional Magnetic Resonance Imaging Using Nonlinear Regularized Parallel Image Reconstruction , 2011, PloS one.

[31]  Jeffrey A. Fessler,et al.  Fast, iterative image reconstruction for MRI in the presence of field inhomogeneities , 2003, IEEE Transactions on Medical Imaging.

[32]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Bixente Dilharreguy,et al.  Influence of fMRI data sampling on the temporal characterization of the hemodynamic response , 2003, NeuroImage.

[34]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[35]  D. DeLone,et al.  Use of a Simple Breath-Holding Task for Cerebrovascular Reactivity Scans in Clinical Functional MR Imaging , 2016 .

[36]  Mathews Jacob,et al.  Accelerated Dynamic MRI Exploiting Sparsity and Low-Rank Structure: k-t SLR , 2011, IEEE Transactions on Medical Imaging.

[37]  Zhi-Pei Liang,et al.  SPATIOTEMPORAL IMAGINGWITH PARTIALLY SEPARABLE FUNCTIONS , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[38]  Qiang He,et al.  Feasibility of high temporal resolution breast DCE-MRI using compressed sensing theory. , 2010, Medical physics.

[39]  Jürgen Hennig,et al.  Single shot whole brain imaging using spherical stack of spirals trajectories , 2013, NeuroImage.

[40]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[41]  Peter Boesiger,et al.  k‐t BLAST and k‐t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations , 2003, Magnetic resonance in medicine.

[42]  Peter Boesiger,et al.  Compressed sensing in dynamic MRI , 2008, Magnetic resonance in medicine.

[43]  Kevin Murphy,et al.  Reliable quantification of BOLD fMRI cerebrovascular reactivity despite poor breath-hold performance☆ , 2013, NeuroImage.

[44]  David Atkinson,et al.  Dynamic MR Image Reconstruction–Separation From Undersampled (${\bf k},t$)-Space via Low-Rank Plus Sparse Prior , 2014, IEEE Transactions on Medical Imaging.

[45]  Klaas P Pruessmann,et al.  Encoding and reconstruction in parallel MRI , 2006, NMR in biomedicine.

[46]  P. Boesiger,et al.  Advances in sensitivity encoding with arbitrary k‐space trajectories , 2001, Magnetic resonance in medicine.

[47]  Stephen M Smith,et al.  k-t FASTER: Acceleration of functional MRI data acquisition using low rank constraints , 2014, Magnetic resonance in medicine.

[48]  Oliver Speck,et al.  MR-Encephalography: Fast multi-channel monitoring of brain physiology with magnetic resonance , 2007, NeuroImage.

[49]  Bida Zhang,et al.  Convergence behavior of iterative SENSE reconstruction with non‐Cartesian trajectories , 2005, Magnetic resonance in medicine.

[50]  J. Hennig,et al.  Three‐dimensional MR‐encephalography: Fast volumetric brain imaging using rosette trajectories , 2011, Magnetic resonance in medicine.

[51]  R. Otazo,et al.  Complex difference constrained compressed sensing reconstruction for accelerated PRF thermometry with application to MRI‐induced RF heating , 2015, Magnetic Resonance in Medicine.