An algorithmic framework for colouring locally sparse graphs

We develop an algorithmic framework for graph colouring that reduces the problem to verifying a local probabilistic property of the independent sets. With this we give, for any fixed k ≥ 3 and e > 0, a randomised polynomial-time algorithm for colouring graphs of maximum degree ∆ in which each vertex is contained in at most t copies of a cycle of length k, where 1/2 ≤ t ≤ ∆^(2e / (1+2e)) / (log ∆) 2 , with (1 + e)∆/ log(∆/ √ t) colours. This generalises and improves upon several notable results including those of Kim (1995) and Alon, Krivelevich and Sudakov (1999), and more recent ones of Molloy (2019) and Achlioptas, Iliopoulos and Sinclair (2019). This bound on the chromatic number is tight up to an asymptotic factor 2 and it coincides with a famous algorithmic barrier to colouring random graphs.

[1]  P. Erdös Some remarks on the theory of graphs , 1947 .

[2]  Alistair Sinclair,et al.  Beyond the Lovász Local Lemma: Point to Set Correlations and Their Algorithmic Applications , 2018, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[3]  B. Roberts,et al.  On the average size of independent sets in triangle-free graphs , 2016, 1606.01043.

[4]  Jeong Han Kim,et al.  The Ramsey Number R(3, t) Has Order of Magnitude t2/log t , 1995, Random Struct. Algorithms.

[5]  Rémi de Joannis de Verclos,et al.  Coloring triangle‐free graphs with local list sizes , 2020, Random Struct. Algorithms.

[6]  Dimitris Achlioptas,et al.  Focused Stochastic Local Search and the Lovász Local Lemma , 2015, SODA.

[7]  A. Leaf GRAPH THEORY AND PROBABILITY , 1957 .

[8]  János Komlós,et al.  A Dense Infinite Sidon Sequence , 1981, Eur. J. Comb..

[9]  James B. Shearer,et al.  A note on the independence number of triangle-free graphs , 1983, Discret. Math..

[10]  G. Szekeres,et al.  A combinatorial problem in geometry , 2009 .

[11]  Noga Alon,et al.  Coloring Graphs with Sparse Neighborhoods , 1999, J. Comb. Theory B.

[12]  Nikhil Bansal,et al.  On the Lovász Theta function for Independent Sets in Sparse Graphs , 2015, STOC.

[13]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[14]  T. Bohman The triangle-free process , 2008, 0806.4375.

[15]  Gábor Tardos,et al.  A constructive proof of the general lovász local lemma , 2009, JACM.

[16]  Amin Coja-Oghlan,et al.  On independent sets in random graphs , 2010, SODA '11.

[17]  US M. Halld Improved Approximations of Independent Sets in Bounded-Degree Graphs via Subgraph Removal MAGN , 1994 .

[18]  P. Erdgs,et al.  ON MAXIMAL PATHS AND CIRCUITS OF GRAPHS , 2002 .

[19]  Van H. Vu,et al.  A General Upper Bound on the List Chromatic Number of Locally Sparse Graphs , 2002, Combinatorics, Probability and Computing.

[20]  Will Perkins,et al.  Independent sets, matchings, and occupancy fractions , 2015, J. Lond. Math. Soc..

[21]  Michael Molloy,et al.  The list chromatic number of graphs with small clique number , 2017, J. Comb. Theory B.

[22]  Tom Bohman,et al.  Dynamic concentration of the triangle‐free process , 2013, Random Struct. Algorithms.

[23]  Anton Bernshteyn,et al.  The Johansson‐Molloy theorem for DP‐coloring , 2017, Random Struct. Algorithms.

[24]  Florent Krzakala,et al.  Phase Transitions in the Coloring of Random Graphs , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Hans L. Bodlaender,et al.  On Linear Time Minor Tests with Depth-First Search , 1993, J. Algorithms.

[26]  Jeong Han Kim On Brooks' Theorem for Sparse Graphs , 1995, Comb. Probab. Comput..

[27]  Ross J. Kang,et al.  Graph structure via local occupancy , 2020, 2003.14361.

[28]  Aline Parreau,et al.  Acyclic edge-coloring using entropy compression , 2012, Eur. J. Comb..

[29]  Aravind Srinivasan,et al.  Randomized Distributed Edge Coloring via an Extension of the Chernoff-Hoeffding Bounds , 1997, SIAM J. Comput..

[30]  Gonzalo Fiz Pontiveros,et al.  The triangle-free process and R(3,k) , 2013 .

[31]  Avraham Adler,et al.  Lambert-W Function , 2015 .

[32]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[33]  Rémi de Joannis de Verclos,et al.  Occupancy fraction, fractional colouring, and triangle fraction , 2018, ArXiv.

[34]  P. Erdos-L Lovász Problems and Results on 3-chromatic Hypergraphs and Some Related Questions , 2022 .

[35]  B. Reed Graph Colouring and the Probabilistic Method , 2001 .

[36]  V. G. Vizing SOME UNSOLVED PROBLEMS IN GRAPH THEORY , 1968 .

[37]  János Komlós,et al.  A Note on Ramsey Numbers , 1980, J. Comb. Theory, Ser. A.

[38]  Luke Postle,et al.  Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8 , 2015, J. Comb. Theory B.

[39]  Robin A. Moser A constructive proof of the Lovász local lemma , 2008, STOC '09.

[40]  Amin Coja-Oghlan,et al.  Algorithmic Barriers from Phase Transitions , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.