Morpho-kinematical modelling of Nova Eridani 2009 (KT Eri)

Modelling the morphology of a nova outburst provides valuable information on the shaping mechanism in operation at early stages following the outburst. We performed morphokinematical studies, using shape, of the evolution of the Hα line profile following the outburst of the nova KT Eridani. We applied a series of geometries in order to determine the morphology of the system. The best fit morphology was that of a dumbbell structure with a ratio between the major to minor axis of 4:1, with an inclination angle of 58+6−7 degrees and a maximum expansion velocity of 2800±200 km s−1. Although, we found that it is possible to define the overall structure of the system, the radial density profile of the ejecta is much more difficult to disentangle. Furthermore, morphology implied here may also be consistent with the presence of an evolved secondary as suggested by various authors.

[1]  South Africa,et al.  ON THE PROGENITORS OF GALACTIC NOVAE , 2011, 1112.2589.

[2]  I. A. Steele,et al.  A fully automated data reduction pipeline for the FRODOSpec integral field spectrograph , 2011, 1112.2574.

[3]  U. Munari,et al.  Historical light curve and search for previous outbursts of Nova KT Eridani (2009) , 2011, Astronomy & Astrophysics.

[4]  Marcus A. Magnor,et al.  Shape: A 3D Modeling Tool for Astrophysics , 2010, IEEE Transactions on Visualization and Computer Graphics.

[5]  I. Steele,et al.  The morphology of the expanding ejecta of V2491 Cygni (2008 N.2) , 2010, 1011.2045.

[6]  M. F. Bode,et al.  EXQUISITE NOVA LIGHT CURVES FROM THE SOLAR MASS EJECTION IMAGER (SMEI) , 2010, 1009.1737.

[7]  U. Munari,et al.  Properties, evolution and morpho-kinematical modelling of the very fast nova V2672 Oph (Nova Oph 2009), a clone of U Sco , 2010, 1009.0334.

[8]  M. F. Bode,et al.  The outbursts of classical and recurrent novae , 2009, 0911.5254.

[9]  Max-Planck-Institut fur Radioastronomie,et al.  THE EXPANDING NEBULAR REMNANT OF THE RECURRENT NOVA RS OPHIUCHI (2006). II. MODELING OF COMBINED HUBBLE SPACE TELESCOPE IMAGING AND GROUND-BASED SPECTROSCOPY , 2009, 0908.2704.

[10]  N. Gehrels,et al.  Swift Observations of the 2006 Outburst of the Recurrent Nova RS Ophiuchi. I. Early X-Ray Emission from the Shocked Ejecta and Red Giant Wind , 2006, astro-ph/0604618.

[11]  Astronomy,et al.  An Extended Grid of Nova Models. II. The Parameter Space of Nova Outbursts , 2005, astro-ph/0503143.

[12]  Liverpool John Moores University,et al.  The Liverpool Telescope Spectrograph: FRODOSpec , 2004, astro-ph/0401077.

[13]  D. Harman,et al.  Hubble Space Telescope imaging and ground-based spectroscopy of old nova shells — II. The bipolar shell of the slow nova HR Del , 2003 .

[14]  L. Pasquini,et al.  The evolution of Nova V382 Velorum 1999 , 2002, astro-ph/0205135.

[15]  T. O’brien,et al.  Hubble Space Telescope imaging and ground-based spectroscopy of old nova shells – I. FH Ser, V533 Her, BT Mon, DK Lac and V476 Cyg , 2000, astro-ph/0001092.

[16]  I. Hachisu,et al.  A Theoretical Light-Curve Model for the 1999 Outburst of U Scorpii , 1999, The Astrophysical journal.

[17]  J. Dunlop,et al.  A deep optical imaging study of the nebular remnants of classical novae , 1995 .

[18]  J. Truran,et al.  Recurrent novae as a consequence of the accretion of solar material onto a 1. 38 M/sub sun/ white dwarf , 1985 .

[19]  J. Solf On the geometrical and kinematic structure of the postnova shell of HR Delphini , 1983 .

[20]  J. Hutchings The Non-Spherical Nebulae of Nova Delphini 1967, Nova Vulpeculae 1968(1), and Nova Serpentis 1970 , 1972 .

[21]  R. P. Kraft,et al.  An Intrepretation of AE Aquarii. , 1956 .