Discontinuous Galerkin finite volume element methods for second‐order linear elliptic problems
暂无分享,去创建一个
[1] J. Douglas,et al. Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .
[2] Mary F. Wheeler,et al. A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[3] Zhiqiang Cai,et al. On the finite volume element method , 1990 .
[4] Xiu Ye,et al. A New Discontinuous Finite Volume Method for Elliptic Problems , 2004, SIAM J. Numer. Anal..
[5] Tao Lin,et al. On the Accuracy of the Finite Volume Element Method Based on Piecewise Linear Polynomials , 2001, SIAM J. Numer. Anal..
[6] Umran S. Inan,et al. Finite volume and finite element methods , 2011 .
[7] Susanne C. Brenner,et al. A Weakly Over-Penalized Non-Symmetric Interior Penalty Method , 2007 .
[8] R. Schreiber. Numerical Methods for Partial Differential Equations , 1999 .
[9] So-Hsiang Chou,et al. Unified Analysis of Finite Volume Methods for Second Order Elliptic Problems , 2007, SIAM J. Numer. Anal..
[10] Thierry Gallouët,et al. Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on a triangular mesh , 1993 .
[11] R. Lazarov,et al. Finite volume element approximations of nonlocal reactive flows in porous media , 2000 .
[12] Ronghua Li. Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods , 2000 .
[13] D. Arnold. An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .
[14] Panagiotis E. Souganidis,et al. Finite volume schemes for Hamilton–Jacobi equations , 1999, Numerische Mathematik.
[15] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[16] I. Babuska. The Finite Element Method with Penalty , 1973 .
[17] M. Wheeler. An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .
[18] Panagiotis Chatzipantelidis. Finite Volume Methods for Elliptic PDE's: A New Approach , 2002 .
[19] Ohannes A. Karakashian,et al. A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..
[20] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[21] Mats G. Larson,et al. Analysis of a family of discontinuous Galerkin methods for elliptic problems: the one dimensional case , 2004, Numerische Mathematik.
[22] Paul Houston,et al. Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..
[23] Qian Li,et al. Error estimates in L2, H1 and Linfinity in covolume methods for elliptic and parabolic problems: A unified approach , 1999, Math. Comput..
[24] D. Rose,et al. Some errors estimates for the box method , 1987 .