Discontinuous Galerkin finite volume element methods for second‐order linear elliptic problems

In this article, a one parameter family of discontinuous Galerkin finite volume element methods for approximating the solution of a class of second-order linear elliptic problems is discussed. Optimal error estimates in L2 and broken H1- norms are derived. Numerical results confirm the theoretical order of convergences. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009

[1]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[2]  Mary F. Wheeler,et al.  A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[3]  Zhiqiang Cai,et al.  On the finite volume element method , 1990 .

[4]  Xiu Ye,et al.  A New Discontinuous Finite Volume Method for Elliptic Problems , 2004, SIAM J. Numer. Anal..

[5]  Tao Lin,et al.  On the Accuracy of the Finite Volume Element Method Based on Piecewise Linear Polynomials , 2001, SIAM J. Numer. Anal..

[6]  Umran S. Inan,et al.  Finite volume and finite element methods , 2011 .

[7]  Susanne C. Brenner,et al.  A Weakly Over-Penalized Non-Symmetric Interior Penalty Method , 2007 .

[8]  R. Schreiber Numerical Methods for Partial Differential Equations , 1999 .

[9]  So-Hsiang Chou,et al.  Unified Analysis of Finite Volume Methods for Second Order Elliptic Problems , 2007, SIAM J. Numer. Anal..

[10]  Thierry Gallouët,et al.  Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on a triangular mesh , 1993 .

[11]  R. Lazarov,et al.  Finite volume element approximations of nonlocal reactive flows in porous media , 2000 .

[12]  Ronghua Li Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods , 2000 .

[13]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[14]  Panagiotis E. Souganidis,et al.  Finite volume schemes for Hamilton–Jacobi equations , 1999, Numerische Mathematik.

[15]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[16]  I. Babuska The Finite Element Method with Penalty , 1973 .

[17]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[18]  Panagiotis Chatzipantelidis Finite Volume Methods for Elliptic PDE's: A New Approach , 2002 .

[19]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[20]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[21]  Mats G. Larson,et al.  Analysis of a family of discontinuous Galerkin methods for elliptic problems: the one dimensional case , 2004, Numerische Mathematik.

[22]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..

[23]  Qian Li,et al.  Error estimates in L2, H1 and Linfinity in covolume methods for elliptic and parabolic problems: A unified approach , 1999, Math. Comput..

[24]  D. Rose,et al.  Some errors estimates for the box method , 1987 .