Polygonal finite elements for incompressible fluid flow
暂无分享,去创建一个
Glaucio H. Paulino | Anderson Pereira | Ivan F. M. Menezes | Glaucio H. Paulino | Cameron Talischi | Marcio S. Carvalho | G. Paulino | Cameron Talischi | I. Menezes | A. Pereira | M. Carvalho
[1] Clark R. Dohrmann,et al. Stabilization of Low-order Mixed Finite Elements for the Stokes Equations , 2004, SIAM J. Numer. Anal..
[2] C. S. Jog,et al. Stability of finite element models for distributed-parameter optimization and topology design , 1996 .
[3] P. Milbradt,et al. Polytope finite elements , 2008 .
[4] K. Bathe,et al. The inf-sup test , 1993 .
[5] R. A. Nicolaides,et al. Stable and Semistable Low Order Finite Elements for Viscous Flows , 1985 .
[6] G. Paulino,et al. PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .
[7] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[8] I. Babuska. Error-bounds for finite element method , 1971 .
[9] Glaucio H. Paulino,et al. Honeycomb Wachspress finite elements for structural topology optimization , 2009 .
[10] John E. Bolander,et al. Automated Modeling of Three‐Dimensional Structural Components Using Irregular Lattices , 2005 .
[11] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .
[12] F. Brezzi,et al. Basic principles of Virtual Element Methods , 2013 .
[13] P. Le Tallec,et al. On the convergence of the bilinear-velocity constant-pressure finite element method in viscous flow , 1986 .
[14] Pierre Alliez,et al. Optimizing Voronoi Diagrams for Polygonal Finite Element Computations , 2010, IMR.
[15] Mohamed S. Ebeida,et al. Uniform Random Voronoi Meshes , 2011, IMR.
[16] N. Sukumar,et al. Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .
[17] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[18] Zhiqiang Cai,et al. An error estimate for two-dimensional Stokes driven cavity flow , 2008, Math. Comput..
[19] Annalisa Buffa,et al. Mimetic finite differences for elliptic problems , 2009 .
[20] E. T. Olsen,et al. Obtaining error estimates for optimally constrained incompressible finite elements , 1984 .
[21] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[22] D. Malkus. Eigenproblems associated with the discrete LBB condition for incompressible finite elements , 1981 .
[23] J. P. Benque,et al. A finite element method for Navier-Stokes equations , 1980 .
[24] Chandrajit L. Bajaj,et al. Quadratic serendipity finite elements on polygons using generalized barycentric coordinates , 2011, Math. Comput..
[25] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[26] A. Huerta,et al. Finite Element Methods for Flow Problems , 2003 .
[27] Robert L. Lee,et al. The cause and cure (!) of the spurious pressures generated by certain fem solutions of the incompressible Navier‐Stokes equations: Part 2 , 1981 .
[28] E. Wachspress,et al. A Rational Finite Element Basis , 1975 .
[29] Gianmarco Manzini,et al. Error Analysis for a Mimetic Discretization of the Steady Stokes Problem on Polyhedral Meshes , 2010, SIAM J. Numer. Anal..
[30] R. A. Nicolaides,et al. On the stability of bilinear-constant velocity-pressure finite elements , 1984 .
[31] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[32] Pavel B. Bochev,et al. A Taxonomy of Consistently Stabilized Finite Element Methods for the Stokes Problem , 2004, SIAM J. Sci. Comput..
[33] David J. Silvester. Optimal low order finite element methods for incompressible flow , 1994 .
[34] Anupam Saxena,et al. A Material-Mask Overlay Strategy for Continuum Topology Optimization of Compliant Mechanisms Using Honeycomb Discretization , 2008 .
[35] Ellen Kuhl,et al. Diamond elements: a finite element/discrete‐mechanics approximation scheme with guaranteed optimal convergence in incompressible elasticity , 2007, International Journal for Numerical Methods in Engineering.
[36] Jirí Kosinka,et al. On the injectivity of Wachspress and mean value mappings between convex polygons , 2010, Adv. Comput. Math..
[37] M. Shashkov,et al. A new discretization methodology for diffusion problems on generalized polyhedral meshes , 2007 .
[38] Glaucio H. Paulino,et al. Polygonal finite elements for topology optimization: A unifying paradigm , 2010 .
[39] M. M. Rashid,et al. A three‐dimensional finite element method with arbitrary polyhedral elements , 2006 .
[40] Konstantin Lipnikov,et al. A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles , 2010, SIAM J. Sci. Comput..
[41] Somnath Ghosh,et al. Micromechanical Analysis and Multi-Scale Modeling Using the Voronoi Cell Finite Element Method , 2011 .
[42] Roger Pierre,et al. Simple C o approximations for the computation of incompressible flows , 1988 .
[43] M. Fortin,et al. Finite Elements for the Stokes Problem , 2008 .
[44] N. Sukumar,et al. Generalized Gaussian quadrature rules on arbitrary polygons , 2010 .
[45] N. Sukumar,et al. Conforming polygonal finite elements , 2004 .
[46] M. Fortin,et al. A stable finite element for the stokes equations , 1984 .
[47] Stéphane Bordas,et al. Numerical integration over arbitrary polygonal domains based on Schwarz–Christoffel conformal mapping , 2009 .
[48] Chandrajit L. Bajaj,et al. Error estimates for generalized barycentric interpolation , 2010, Adv. Comput. Math..
[49] Gianmarco Manzini,et al. Mimetic finite difference method for the Stokes problem on polygonal meshes , 2009, J. Comput. Phys..
[50] Kai Hormann,et al. Maximum Entropy Coordinates for Arbitrary Polytopes , 2008, Comput. Graph. Forum.
[51] Glaucio H. Paulino,et al. PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes , 2012 .
[52] Gianmarco Manzini,et al. Arbitrary-Order Nodal Mimetic Discretizations of Elliptic Problems on Polygonal Meshes , 2011, SIAM J. Numer. Anal..
[53] Mark Meyer,et al. Generalized Barycentric Coordinates on Irregular Polygons , 2002, J. Graphics, GPU, & Game Tools.
[54] Pavel B. Bochev,et al. On the Finite Element Solution of the Pure Neumann Problem , 2005, SIAM Rev..
[55] O. Botella,et al. BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .
[56] Dominik Schötzau,et al. hp -finite element simulations for Stokes flow—stable and stabilized , 1999 .
[57] Kai Hormann,et al. A general construction of barycentric coordinates over convex polygons , 2006, Adv. Comput. Math..
[58] U. Ghia,et al. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .
[59] A. Huerta,et al. Finite Element Methods for Flow Problems , 2003 .
[60] J. Bolander,et al. Fracture analyses using spring networks with random geometry , 1998 .
[61] J. Douglas,et al. Stabilized mixed methods for the Stokes problem , 1988 .