Magneto-active soft matter with reprogrammable shape-morphing and self-sensing capabilities

[1]  M. Bodaghi,et al.  Soft Magneto‐Responsive Shape Memory Foam Composite Actuators , 2022, Macromolecular Materials and Engineering.

[2]  Zhong Lin Wang,et al.  Recent progress in blue energy harvesting for powering distributed sensors in ocean , 2021 .

[3]  Fan Yang,et al.  Magnetoactive Soft Drivers with Radial-Chain Iron Microparticles. , 2021, ACS applied materials & interfaces.

[4]  X. Gong,et al.  3D Printing Magnetic Actuators for Biomimetic Applications. , 2021, ACS applied materials & interfaces.

[5]  Mehdi Eshaghi,et al.  Design, manufacturing and applications of small-scale magnetic soft robots , 2021 .

[6]  X. Gong,et al.  Magnetism-Responsive Anisotropic Film with Self-Sensing and Multifunctional Shape Manipulation. , 2021, ACS applied materials & interfaces.

[7]  Wenzhen Yuan,et al.  Soft magnetic skin for super-resolution tactile sensing with force self-decoupling , 2021, Science Robotics.

[8]  Zhipeng Chen,et al.  4D Printing of Magnetoactive Soft Materials for On-Demand Magnetic Actuation Transformation. , 2021, ACS applied materials & interfaces.

[9]  Fenglin Liu,et al.  A pre-magnetized NdFeB-particle reinforced magnetorheological elastomer , 2020, Smart Materials and Structures.

[10]  Qiji Ze,et al.  Magnetic Dynamic Polymers for Modular Assembling and Reconfigurable Morphing Architectures , 2020, Advanced materials.

[11]  Zhong Lin Wang,et al.  Soft robots with self-powered configurational sensing , 2020 .

[12]  Zhong Lin Wang,et al.  A highly efficient triboelectric negative air ion generator , 2020, Nature Sustainability.

[13]  Yida Liu,et al.  Soft bimorph actuator with real-time multiplex motion perception , 2020 .

[14]  Feifei Chen,et al.  Stimuli-responsive functional materials for soft robotics. , 2020, Journal of materials chemistry. B.

[15]  M. Verdier,et al.  Fabrication and Magnetic Actuation of 3D‐Microprinted Multifunctional Hybrid Microstructures , 2020, Advanced Materials Technologies.

[16]  Jun Kyu Choe,et al.  Reprogrammable ferromagnetic domains for reconfigurable soft magnetic actuators. , 2020, Nano letters.

[17]  X. Gong,et al.  The magneto-mechanical properties of off-axis anisotropic magnetorheological elastomers , 2020 .

[18]  D. Borin,et al.  Negative coercivity of magnetic elastomers filled with magnetically hard particles , 2020 .

[19]  Hengyu Guo,et al.  3D printed shape-programmable magneto-active soft matter for biomimetic applications , 2020, Composites Science and Technology.

[20]  W. Guo,et al.  Triboelectric nanogenerators enabled sensing and actuation for robotics , 2019, Nano Energy.

[21]  Jie Fu,et al.  Versatile magnetorheological plastomer with 3D printability, switchable mechanics, shape memory, and self-healing capacity , 2019, Composites Science and Technology.

[22]  Ujjaval Gupta,et al.  Soft robots based on dielectric elastomer actuators: a review , 2019, Smart Materials and Structures.

[23]  Xuanhe Zhao,et al.  Ferromagnetic soft continuum robots , 2019, Science Robotics.

[24]  Xiaodi Zhang,et al.  Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing , 2019, Nano Energy.

[25]  Tianqi Xu,et al.  Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions , 2019, Science Robotics.

[26]  Zhong Lin Wang,et al.  Integrated charge excitation triboelectric nanogenerator , 2019, Nature Communications.

[27]  Jeffrey N. Murphy,et al.  An Untethered Magnetic‐ and Light‐Responsive Rotary Gripper: Shedding Light on Photoresponsive Liquid Crystal Actuators , 2019, Advanced Optical Materials.

[28]  A. Schenning,et al.  On Untethered, Dual Magneto‐ and Photoresponsive Liquid Crystal Bilayer Actuators Showing Bending and Rotating Motion , 2019, Advanced Optical Materials.

[29]  Xue Wang,et al.  Rotation sensing and gesture control of a robot joint via triboelectric quantization sensor , 2018, Nano Energy.

[30]  M. Sitti,et al.  Mobile Microrobots for Active Therapeutic Delivery , 2018, Advanced Therapeutics.

[31]  Jian Zhu,et al.  Control of a muscle-like soft actuator via a bioinspired approach , 2018, Bioinspiration & biomimetics.

[32]  A. Lendlein,et al.  Reprogrammable, magnetically controlled polymeric nanocomposite actuators , 2018 .

[33]  Jie Chen,et al.  A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids , 2018, Science Robotics.

[34]  Kyu-Jin Cho,et al.  Design of a Bioinspired Robotic Hand: Magnetic Synapse Sensor Integration for a Robust Remote Tactile Sensing , 2018, IEEE Robotics and Automation Letters.

[35]  Ying-Chih Lai,et al.  Actively Perceiving and Responsive Soft Robots Enabled by Self‐Powered, Highly Extensible, and Highly Sensitive Triboelectric Proximity‐ and Pressure‐Sensing Skins , 2018, Advanced materials.

[36]  Shawn A. Chester,et al.  Printing ferromagnetic domains for untethered fast-transforming soft materials , 2018, Nature.

[37]  Michael T. Tolley,et al.  Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators , 2018, Science Robotics.

[38]  Zhong Lin Wang,et al.  Magnetorheological elastomers enabled high-sensitive self-powered tribo-sensor for magnetic field detection. , 2018, Nanoscale.

[39]  Weihua Li,et al.  Versatile Microfluidic Platforms Enabled by Novel Magnetorheological Elastomer Microactuators , 2018 .

[40]  Seyed M. Mirvakili,et al.  Artificial Muscles: Mechanisms, Applications, and Challenges , 2018, Advanced materials.

[41]  Metin Sitti,et al.  Small-scale soft-bodied robot with multimodal locomotion , 2018, Nature.

[42]  Paolo Dario,et al.  Biohybrid actuators for robotics: A review of devices actuated by living cells , 2017, Science Robotics.

[43]  Tao Jiang,et al.  Toward the blue energy dream by triboelectric nanogenerator networks , 2017 .

[44]  S. Odenbach,et al.  A characterisation of the magnetically induced movement of NdFeB-particles in magnetorheological elastomers , 2017 .

[45]  Zhong Lin Wang,et al.  Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator , 2017, Science Advances.

[46]  X. Gong,et al.  The magnetic field dependent dynamic properties of magnetorheological elastomers based on hard magnetic particles , 2017 .

[47]  Mengmeng Liu,et al.  Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing , 2017, Science Advances.

[48]  Zhong Lin Wang,et al.  Ultralight Cut-Paper-Based Self-Charging Power Unit for Self-Powered Portable Electronic and Medical Systems. , 2017, ACS nano.

[49]  M. Sitti,et al.  Soft Actuators for Small‐Scale Robotics , 2017, Advanced materials.

[50]  Joseph B Tracy,et al.  Chained Iron Microparticles for Directionally Controlled Actuation of Soft Robots. , 2017, ACS applied materials & interfaces.

[51]  D. Borin,et al.  Magnetic properties of hybrid elastomers with magnetically hard fillers: rotation of particles , 2017 .

[52]  Metin Sitti,et al.  Shape-programmable magnetic soft matter , 2016, Proceedings of the National Academy of Sciences.

[53]  Salvador Pané,et al.  Soft micromachines with programmable motility and morphology , 2016, Nature Communications.

[54]  Haofei Shi,et al.  Enhancing Performance of Triboelectric Nanogenerator by Filling High Dielectric Nanoparticles into Sponge PDMS Film. , 2016, ACS applied materials & interfaces.

[55]  Hongzhi Wang,et al.  Origami-inspired active graphene-based paper for programmable instant self-folding walking devices , 2015, Science Advances.

[56]  Eitan Sapiro-Gheiler,et al.  Mechanochemically Active Soft Robots. , 2015, ACS applied materials & interfaces.

[57]  Mi Zhu,et al.  A high-damping magnetorheological elastomer with bi-directional magnetic-control modulus for potential application in seismology , 2015 .

[58]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[59]  Chenguo Hu,et al.  Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density. , 2015, Nanoscale.

[60]  Samuel M. Felton,et al.  A method for building self-folding machines , 2014, Science.

[61]  Qiang Zhao,et al.  An instant multi-responsive porous polymer actuator driven by solvent molecule sorption , 2014, Nature Communications.

[62]  J. Cornelissen,et al.  Conversion of light into macroscopic helical motion. , 2014, Nature chemistry.

[63]  Todd A. Gisby,et al.  Self sensing feedback for dielectric elastomer actuators , 2013 .

[64]  G. Whitesides,et al.  Elastomeric Origami: Programmable Paper‐Elastomer Composites as Pneumatic Actuators , 2012 .

[65]  Howon Lee,et al.  Programming magnetic anisotropy in polymeric microactuators. , 2011, Nature materials.

[66]  H. Choi,et al.  A self-sensing dielectric elastomer actuator , 2008 .

[67]  Gianluca Percoco,et al.  Additive manufacturing aimed to soft robots fabrication: A review , 2021 .