Kinetic and X-ray Absorption Spectroscopic Analysis of Catalytic Redox Cycles over Highly Uniform Polymetal Oxo Clusters

[1]  Praveen Bollini,et al.  Role of Metal Identity and Speciation in the Low‐Temperature Oxidation of Methane over Tri‐Metal Oxo Clusters , 2021, AIChE Journal.

[2]  B. Gates,et al.  Beyond Radical Rebound: Methane Oxidation to Methanol Catalyzed by Iron Species in Metal-Organic Framework Nodes. , 2021, Journal of the American Chemical Society.

[3]  J. G. Vitillo,et al.  Thermal Treatment Effect on CO and NO Adsorption on Fe(II) and Fe(III) Species in Fe3O-Based MIL-Type Metal–Organic Frameworks: A Density Functional Theory Study , 2021, Inorganic chemistry.

[4]  Praveen Bollini,et al.  Low-Temperature, Ambient Pressure Oxidation of Methane to Methanol Over Every Tri-Iron Node in a Metal-Organic Framework Material. , 2020, Chemistry.

[5]  Praveen Bollini,et al.  Enabling Access to Reduced Open-Metal Sites in Metal-Organic Framework Materials through Choice of Anion Identity: The Case of MIL-100(Cr) , 2020, ACS Materials Letters.

[6]  R. Snurr,et al.  Exploring the Tunability of Trimetallic MOF Nodes for Partial Oxidation of Methane to Methanol. , 2020, ACS applied materials & interfaces.

[7]  Andrew S. Rosen,et al.  High-Valent Metal-Oxo Species at the Nodes of Metal-Triazolate Frameworks: The Effects of Ligand Exchange and Two-State Reactivity for C-H Bond Activation. , 2020, Angewandte Chemie.

[8]  Michelle L. Beauvais,et al.  Structure, Dynamics, and Reactivity for Light Alkane Oxidation of Fe(II) Sites Situated in the Nodes of a Metal-Organic Framework. , 2019, Journal of the American Chemical Society.

[9]  Kepeng Song,et al.  Direct Imaging of Tunable Crystal Surface Structures of MOF MIL-101 Using High-Resolution Electron Microscopy. , 2019, Journal of the American Chemical Society.

[10]  Yoshihiro Shimoyama,et al.  Metal-Oxyl Species and Their Possible Roles in Chemical Oxidations. , 2019, Inorganic chemistry.

[11]  Jenny V Lockard,et al.  Spectroscopic characterization of metal ligation in trinuclear iron-μ3-oxo-based complexes and metal-organic frameworks. , 2019, The Journal of chemical physics.

[12]  Randall Q. Snurr,et al.  Identifying promising metal–organic frameworks for heterogeneous catalysis via high‐throughput periodic density functional theory , 2019, J. Comput. Chem..

[13]  Z. Jagličić,et al.  Unraveling the Arrangement of Al and Fe within the Framework Explains the Magnetism of Mixed-Metal MIL-100(Al,Fe) , 2019, The journal of physical chemistry letters.

[14]  Andrew S. Rosen,et al.  Structure–Activity Relationships That Identify Metal–Organic Framework Catalysts for Methane Activation , 2019, ACS Catalysis.

[15]  Connie C. Lu,et al.  Quantum Chemical Characterization of Structural Single Fe(II) Sites in MIL-Type Metal–Organic Frameworks for the Oxidation of Methane to Methanol and Ethane to Ethanol , 2019, ACS Catalysis.

[16]  M. Probst,et al.  Coordinatively Unsaturated Metal-Organic Frameworks M3(btc)2 (M = Cr, Fe, Co, Ni, Cu, and Zn) Catalyzing the Oxidation of CO by N2O: Insight from DFT Calculations. , 2017, Inorganic chemistry.

[17]  Wendy L. Queen,et al.  Using Predefined M3(μ3-O) Clusters as Building Blocks for an Isostructural Series of Metal-Organic Frameworks. , 2017, ACS applied materials & interfaces.

[18]  J. Čejka,et al.  Superior Activity of Isomorphously Substituted MOFs with MIL-100(M=Al, Cr, Fe, In, Sc, V) Structure in the Prins Reaction: Impact of Metal Type. , 2017, ChemPlusChem.

[19]  Edward I. Solomon,et al.  The active site of low-temperature methane hydroxylation in iron-containing zeolites , 2016, Nature.

[20]  C. Krebs,et al.  Electronic Structure of the Ferryl Intermediate in the α-Ketoglutarate Dependent Non-Heme Iron Halogenase SyrB2: Contributions to H Atom Abstraction Reactivity. , 2016, Journal of the American Chemical Society.

[21]  J. Long,et al.  Synthesis and O2 Reactivity of a Titanium(III) Metal-Organic Framework. , 2015, Inorganic chemistry.

[22]  D. Truhlar,et al.  Mechanism of Oxidation of Ethane to Ethanol at Iron(IV)-Oxo Sites in Magnesium-Diluted Fe2(dobdc). , 2015, Journal of the American Chemical Society.

[23]  C. Serre,et al.  Porous, rigid metal(III)-carboxylate metal-organic frameworks for the delivery of nitric oxide , 2014 .

[24]  S. Ashbrook,et al.  Mixed-metal MIL-100(Sc,M) (M=Al, Cr, Fe) for Lewis acid catalysis and tandem C-C bond formation and alcohol oxidation. , 2014, Chemistry.

[25]  Craig M. Brown,et al.  Oxidation of ethane to ethanol by N2O in a metal-organic framework with coordinatively unsaturated iron(II) sites. , 2014, Nature chemistry.

[26]  C. Serre,et al.  Extended and functionalized porous iron(III) tri- or dicarboxylates with MIL-100/101 topologies. , 2014, Chemical communications.

[27]  U. Ryde,et al.  Large equatorial ligand effects on C-H bond activation by nonheme iron(IV)-oxo complexes. , 2014, The journal of physical chemistry. B.

[28]  C. Serre,et al.  Discovering the active sites for C3 separation in MIL-100(Fe) by using operando IR spectroscopy. , 2012, Chemistry.

[29]  J. Lee,et al.  MIL-100(V) – A mesoporous vanadium metal organic framework with accessible metal sites , 2012 .

[30]  P. Voort,et al.  Vanadium Analogues of Nonfunctionalized and Amino‐Functionalized MOFs with MIL‐101 Topology – Synthesis, Characterization, and Gas Sorption Properties , 2012 .

[31]  E. Iglesia,et al.  Catalytic reactions of dioxygen with ethane and methane on platinum clusters: Mechanistic connections, site requirements, and consequences of chemisorbed oxygen , 2012 .

[32]  Matthew Neurock,et al.  Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters. , 2011, Journal of the American Chemical Society.

[33]  S. Lippard,et al.  Evolution of strategies to prepare synthetic mimics of carboxylate-bridged diiron protein active sites. , 2011, Journal of inorganic biochemistry.

[34]  A. Slawin,et al.  Synthesis, characterisation and adsorption properties of microporous scandium carboxylates with rigid and flexible frameworks , 2011 .

[35]  F. Kapteijn,et al.  Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties , 2011 .

[36]  Kazuhiro Takanabe,et al.  Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters. , 2011, Journal of the American Chemical Society.

[37]  Frank Neese,et al.  Nonheme oxo-iron(IV) intermediates form an oxyl radical upon approaching the C–H bond activation transition state , 2011, Proceedings of the National Academy of Sciences.

[38]  C. Serre,et al.  Controlled reducibility of a metal-organic framework with coordinatively unsaturated sites for preferential gas sorption. , 2010, Angewandte Chemie.

[39]  S. Bharadwaj,et al.  Mechanism of CO + N2O reaction via transient CO3(2-) species over crystalline Fe-substituted lanthanum titanates. , 2010, The journal of physical chemistry. B.

[40]  M. Burghammer,et al.  Synthesis, Single-Crystal X-ray Microdiffraction, and NMR Characterizations of the Giant Pore Metal-Organic Framework Aluminum Trimesate MIL-100 , 2009 .

[41]  E. Iglesia,et al.  NO Oxidation Catalysis on Pt Clusters: Elementary Steps, Structural Requirements, and Synergistic Effects of NO2 Adsorption Sites , 2009 .

[42]  C. Serre,et al.  High-throughput assisted rationalization of the formation of metal organic frameworks in the Iron(III) aminoterephthalate solvothermal system. , 2008, Inorganic chemistry.

[43]  C. Lamberti,et al.  Structure and nuclearity of active sites in Fe-zeolites: comparison with iron sites in enzymes and homogeneous catalysts. , 2007, Physical chemistry chemical physics : PCCP.

[44]  V. Fíla,et al.  Kinetic analysis of N2O decomposition over calcined hydrotalcites , 2007 .

[45]  C. Serre,et al.  Investigation of acid sites in a zeotypic giant pores chromium(III) carboxylate. , 2006, Journal of the American Chemical Society.

[46]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[47]  S. Bordiga,et al.  New precursor for the post-synthesis preparation of Fe-ZSM-5 zeolites with low iron content , 2005 .

[48]  E. Kondratenko,et al.  Transient studies on the mechanism of N2O activation and reaction with CO and C3H8 over Fe-silicalite , 2005 .

[49]  Gérard Férey,et al.  A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. , 2004, Angewandte Chemie.

[50]  Gérard Férey,et al.  A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units. , 2004, Angewandte Chemie.

[51]  G. Pirngruber,et al.  An in situ X-ray absorption spectroscopy study of N2O decomposition over Fe-ZSM-5 prepared by chemical vapor deposition of FeCl3 , 2004 .

[52]  A. J. Kropf,et al.  (Co)MoS2/alumina hydrotreating catalysts : An EXAFS study of the chemisorption and partial oxidation with O2 , 2001 .

[53]  P. Petit,et al.  Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study , 2001 .

[54]  L. Leclercq,et al.  Kinetics of the CO+N2O Reaction over Noble Metals: I. Pt/Al2O3 , 1999 .

[55]  K. Hodgson,et al.  A Multiplet Analysis of Fe K-Edge 1s → 3d Pre-Edge Features of Iron Complexes , 1997 .

[56]  F. Kapteijn,et al.  Kinetic analysis of the decomposition of nitrous oxide over ZSM-5 catalysts , 1997 .

[57]  Andrea Caneschi,et al.  A Cyclic Octadecairon(III) Complex, the Molecular 18‐Wheeler , 1997 .

[58]  A. Renken,et al.  Model discrimination by unsteady-state operation: application to the reduction of NO with CO on iron oxide , 1996 .

[59]  S. Kraft,et al.  High resolution x‐ray absorption spectroscopy with absolute energy calibration for the determination of absorption edge energies , 1996 .

[60]  D. T. Lynch,et al.  N2O Reduction by CO over an Alumina-Supported Pt Catalyst: Forced Composition Cycling , 1994 .

[61]  S. Lippard,et al.  Determining the Structure of a Hydroxylase Enzyme That Catalyzes the Conversion of Methane to Methanol in Methanotrophic Bacteria , 1994 .

[62]  D. Belton,et al.  Kinetics of CO oxidation by N2O over Rh(111) , 1992 .

[63]  S. Lippard,et al.  A general method for assembling (.mu.-oxo)bis(.mu.-carboxylato)diiron(III) complexes with labile terminal sites using a bridging dicarboxylate ligand , 1989 .

[64]  M. Nanny,et al.  Modeling the dinuclear sites of iron biomolecules: synthesis and properties of Fe2O(OAc)2Cl2(bipy)2 and its use as an alkane activation catalyst , 1988 .

[65]  S. Lippard,et al.  Tetranuclear iron-oxo complexes. Synthesis, structure, and properties of species containing the nonplanar {Fe4O2}8+ core and seven bridging carboxylate ligands , 1987 .

[66]  James C. Davis,et al.  Spectroscopic and magnetic studies of the purple acid phosphatase from bovine spleen , 1987 .

[67]  S. Burman,et al.  X-ray absorption studies of the purple acid phosphatase from beef spleen , 1986 .

[68]  B. Sjöberg,et al.  The tyrosyl free radical in ribonucleotide reductase. , 1985, Environmental health perspectives.

[69]  J. Stubbe,et al.  Current ideas on the chemical mechanism of ribonucleotide reductases. , 1985, Pharmacology & therapeutics.

[70]  H. Degn,et al.  Mass spectrometric measurements of methane and oxygen utilization by methanotrophic bacteria , 1983 .

[71]  F. Garbassi,et al.  Isotopic mixing in carbon monoxide catalyzed by zinc oxide , 1978 .

[72]  R. Ross,et al.  The Reaction of Carbon Monoxide with Nitrous Oxide Over Nickel(II) Oxide in the Néel Transition Temperature Region , 1977 .

[73]  Kenichi Tanaka,et al.  Photocatalytic reaction on zinc oxide. II. Oxidation of carbon monoxide with nitrous oxide and oxygen , 1972 .

[74]  D. D. Eley,et al.  The decomposition of nitrous oxide catalysed by palladium-gold alloy wires , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[75]  I. Langmuir THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. , 1918 .