A blind equalizer for nonstationary discrete-valued signals

Adaptive algorithms are proposed for blind equalization of communication channels. The algorithms explicitly utilize the finite alphabetical set of the input signals and minimize a criterion that depends solely on the alphabetical set. The method is shown to be able to handle nonstationary signals without requiring or estimating their time-varying statistical parameters. Simulation results are presented to test and demonstrate the method.

[1]  Ta-Hsin Li,et al.  Blind deconvolution of discrete-valued signals , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[2]  Ehud Weinstein,et al.  New criteria for blind deconvolution of nonminimum phase systems (channels) , 1990, IEEE Trans. Inf. Theory.

[3]  D. Donoho ON MINIMUM ENTROPY DECONVOLUTION , 1981 .

[4]  D. Godard,et al.  Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems , 1980, IEEE Trans. Commun..

[5]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[6]  Giancarlo Prati,et al.  Blind Equalization and Carrier Recovery Using a "Stop-and-Go" Decision-Directed Algorithm , 1987, IEEE Trans. Commun..

[7]  Chrysostomos L. Nikias,et al.  Blind equalization using a tricepstrum-based algorithm , 1991, IEEE Trans. Commun..

[8]  Simon Haykin,et al.  Adaptive filter theory (2nd ed.) , 1991 .

[9]  Bernard Mulgrew,et al.  Blind equalization of nonminimum phase channels: higher order cumulant based algorithm , 1993, IEEE Trans. Signal Process..

[10]  Ta‐Hsin Li Blind Deconvolution of Linear Systems with Multilevel Nonstationary Inputs , 1995 .

[11]  A. Benveniste,et al.  Robust identification of a nonminimum phase system: Blind adjustment of a linear equalizer in data communications , 1980 .

[12]  Ta-Hsin Li,et al.  Blind Restoration of Linearly Degraded , 1995 .

[13]  John G. Proakis,et al.  Digital Communications , 1983 .

[14]  Ta-Hsin Li,et al.  Blind identification and deconvolution of linear systems driven by binary random sequences , 1992, IEEE Trans. Inf. Theory.

[15]  Qiansheng Cheng Maximum Standardized Cumulant Deconvolution of Non-Gaussian Linear Processes , 1990 .