Existence of (v, {5, wstar}, 1)-PBDs

Abstract In this paper, we investigate the existence of pairwise balanced designs on v points having blocks of size five, with a distinguished block of size w, briefly (v,{5,w ∗ },1) -PBDs. The necessary conditions for the existence of a (v,{5,w ∗ },1) -PBD with a distinguished block of size w are that v⩾4w+1, v≡w≡1 ( mod 4) and either v≡w ( mod 20) or v+w≡6 ( mod 20) . Previously, w⩽33 has been studied, and the necessary conditions are known to be sufficient for w=1, 5, 13 and 21, with 8 possible exceptions when w⩽33. In this article, we eliminate 3 of these possible exceptions, showing sufficiency for w=25 and 33. Our main objective is the study of 37⩽w⩽97, where we establish sufficiency for w=73, 81, 85 and 93, with 67 possible exceptions with 37⩽w⩽97. For w≡13 ( mod 20) , we show that the necessary existence conditions are sufficient except possibly for w=53,133,293 and 453. For w≡1,5 ( mod 20) , we show the necessary existence conditions are sufficient for w⩾1281,1505, and for w≡9,17 ( mod 20) , we show that w⩾2029,2477 is sufficient with one possible exceptional series, namely v=4w+9 when w≡17 ( mod 20) . We know of no example where v=4w+9. In this article, we also study the 4-RBIBD embedding problem for small subdesigns (up to 52 points) and update some results of Bennett et al. on PBDs containing a 5-line. As an application of our results for w=33 and 97, we establish the smallest number of blocks in a pair covering design with k=5 when v≡1 ( mod 4) with 37 open cases, the largest being for v=489; hitherto, there were 104 open cases, the largest being v=2249.

[1]  R. Julian R. Abel,et al.  Some new RBIBDs with block size 5 and PBDs with block sizes ≡1 mod 5 , 1997, Australas. J Comb..

[2]  Steven Furino,et al.  Frames and Resolvable Designs: Uses, Constructions and Existence , 1996 .

[3]  Hanfried Lenz,et al.  Unterräume von Blockplänen , 1979 .

[4]  Gennian Ge Uniform frames with block size four and index one or three , 2001 .

[5]  R. J. R. Abel,et al.  The existence of perfect Mendelsohn designs with block size 7 , 1998, Discret. Math..

[6]  Andries E. Brouwer,et al.  Optimal Packings of K4's into a Kn , 1979, J. Comb. Theory A.

[7]  R. Julian R. Abel,et al.  The Existence of Four HMOLS with Equal Sized Holes , 2002, Des. Codes Cryptogr..

[8]  Lie Zhu,et al.  Embeddings of S(2, 4, v) , 1989, European journal of combinatorics (Print).

[9]  Andries E. Brouwer,et al.  Subspaces of Linear Spaces of Line Size 4 , 1981, Eur. J. Comb..

[10]  Haim Hanani,et al.  Balanced incomplete block designs and related designs , 1975, Discret. Math..

[11]  Marion Fort,et al.  Minimal coverings of pairs by triples , 1958 .

[12]  Chi H. A. Ling Pairwise balanced designs and related codes , 1997 .

[13]  E. R. Lamken,et al.  Four pairwise balanced designs , 1991, Des. Codes Cryptogr..

[14]  R. Julian R. Abel,et al.  Resolvable balanced incomplete block designs with block size 5 , 2001 .

[15]  Alexander Rosa,et al.  On Partially Resolvable t–Partitions , 1982 .

[16]  Alan C. H. Ling,et al.  A survey on resolvable group divisible designs with block size four , 2004, Discret. Math..

[17]  Ahmed M. Assaf,et al.  An Application of Modified Group Divisible Designs , 1994, J. Comb. Theory, Ser. A.

[18]  Frank E. Bennett,et al.  Some results on (v,{5,w*})‐pbds , 1995 .

[19]  Hao Shen,et al.  Resolvable Maximum Packings with Quadruples , 2005, Des. Codes Cryptogr..

[20]  Charles J. Colbourn,et al.  Quintessential pairwise balanced designs , 1998 .

[21]  Ronald C. Mullin,et al.  On the existence of frames , 1981, Discret. Math..

[22]  Frank E. Bennett,et al.  Perfect Mendelsohn designs with block size six , 2000 .

[23]  Charles J. Colbourn,et al.  The existence of uniform 5‐GDDs , 1997 .

[24]  W. D. Wallis,et al.  Combinatorial Designs and Applications , 1990 .

[25]  L. Zhu,et al.  Embeddings of Steiner Systems 5(2,4, v) , 1987 .

[26]  Malcolm Greig,et al.  Some Pairwise Balanced Designs , 1999, Electron. J. Comb..

[27]  Douglas R. Stinson A new proof of the Doyen-Wilson theorem , 1989 .

[28]  Jiaying Shen,et al.  Existence of resolvable group divisible designs with block size four I , 2002, Discret. Math..

[29]  Gennian Ge Resolvable group divisible designs with block size four , 2002, Discret. Math..

[30]  Andries E. Brouwer Four mols of order 10 with a hole of order 2 , 1984 .

[31]  Richard M. Wilson,et al.  Embeddings of Steiner triple systems , 1973, Discret. Math..

[32]  Hanfried Lenz,et al.  Design theory , 1985 .

[33]  Rolf S. Rees,et al.  Group‐divisible designs with block size k having k + 1 groups, for k = 4, 5 , 2000 .

[34]  Douglas R Stinson,et al.  Contemporary design theory : a collection of surveys , 1992 .

[35]  Richard M. Wilson,et al.  Constructions and Uses of Pairwise Balanced Designs , 1975 .

[36]  Richard M. Wilson,et al.  On resolvable designs , 1972, Discret. Math..

[37]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[38]  Andries E. Brouwer Mutually orthogonal latin squares , 1978 .

[39]  Clement W. H. Lam,et al.  Resolvable group divisible designs with block size four and group size six , 2003, Discret. Math..

[40]  R. Julian R. Abel Some new BIBDs with block size 7 , 2000 .

[41]  Malcolm Greig Designs from projective planes and PBD bases , 1999 .

[42]  Denys Pommeret,et al.  Orthogonality of the Sheffer system associated to a Levy process , 2000 .