Multi-Objective Clustering Ensemble

In this paper, we present an algorithm for cluster analysis that provides a robust way to deal with datasets presenting different types of clusters and allows finding more than one structure in a dataset. Our approach is based on ideas from cluster ensembles and multi-objective clustering. We apply a Pareto-based multi-objective genetic algorithm with a special crossover operator. Such an operator combines a number of partitions obtained according to different clustering criteria. As a result, our approach generates a concise and stable set of partitions representing different trade-offs between two validation measures related to different clustering criteria.

[1]  Joshua D. Knowles,et al.  An Evolutionary Approach to Multiobjective Clustering , 2007, IEEE Transactions on Evolutionary Computation.

[2]  Joshua D. Knowles,et al.  Exploiting the Trade-off - The Benefits of Multiple Objectives in Data Clustering , 2005, EMO.

[3]  E. Lander,et al.  Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Douglas B. Kell,et al.  Computational cluster validation in post-genomic data analysis , 2005, Bioinform..

[5]  Anil K. Jain,et al.  Multiobjective data clustering , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[6]  Anil K. Jain,et al.  A Mixture Model for Clustering Ensembles , 2004, SDM.

[7]  Ludmila I. Kuncheva,et al.  Experimental Comparison of Cluster Ensemble Methods , 2006, 2006 9th International Conference on Information Fusion.

[8]  Vladimir Estivill-Castro,et al.  Why so many clustering algorithms: a position paper , 2002, SKDD.

[9]  Michalis Vazirgiannis,et al.  Clustering validity checking methods: part II , 2002, SGMD.

[10]  Satoru Miyano,et al.  Open source clustering software , 2004 .

[11]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[12]  Michalis Vazirgiannis,et al.  c ○ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. On Clustering Validation Techniques , 2022 .

[13]  J. Downing,et al.  Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. , 2002, Cancer cell.

[14]  G. W. Milligan,et al.  A Study of the Comparability of External Criteria for Hierarchical Cluster Analysis. , 1986, Multivariate behavioral research.

[15]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[16]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[17]  Joydeep Ghosh,et al.  Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..

[18]  Levent Ertoz,et al.  A New Shared Nearest Neighbor Clustering Algorithm and its Applications , 2002 .

[19]  Carla E. Brodley,et al.  Solving cluster ensemble problems by bipartite graph partitioning , 2004, ICML.

[20]  Michalis Vazirgiannis,et al.  Cluster validity methods: part I , 2002, SGMD.