The preliminary exploration of composition origin of garnet-type solid inorganic electrolytes by cluster-plus-glue-atom model

[1]  Weihua Liang,et al.  Effects of the Separator MOF-Al2O3 Coating on Battery Rate Performance and Solid-Electrolyte Interphase Formation. , 2022, ACS applied materials & interfaces.

[2]  Murugan Ramaswamy,et al.  Review—Microstructural Modification in Lithium Garnet Solid-State Electrolytes: Emerging Trends , 2022, Journal of The Electrochemical Society.

[3]  Shuang Zhang,et al.  The preliminary exploration of composition origin of solid solution alloys used in thermocouple by cluster-plus-glue-atom model , 2022, Materials & Design.

[4]  D. Mitlin,et al.  Review of modification strategies in emerging inorganic solid-state electrolytes for lithium, sodium, and potassium batteries , 2022, Joule.

[5]  Mingliang L. Huang,et al.  Dual-cluster model of Sn-based binary eutectics and solders , 2022, Materials Today Communications.

[6]  M. Wahab,et al.  Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate , 2022, Physica B: Condensed Matter.

[7]  Y.L. Hu,et al.  Compositional interpretation of high elasticity Cu-Ni-Sn alloys using cluster-plus-glue-atom model , 2022, Journal of Materials Research and Technology.

[8]  J. Keum,et al.  Nanostructured ligament and fiber Al–doped Li7La3Zr2O12 scaffolds to mediate cathode-electrolyte interface chemistry , 2021, Journal of Power Sources.

[9]  N. Imanishi,et al.  A Review on Li+/H+ Exchange in Garnet Solid Electrolytes: From Instability against Humidity to Sustainable Processing in Water , 2021, ChemSusChem.

[10]  B. Obadele,et al.  Microstructure and mechanical properties of Ti-Mo-Nb alloys designed using the cluster-plus-glue-atom model for orthopedic applications , 2021, The International Journal of Advanced Manufacturing Technology.

[11]  C. Dong,et al.  Molecule-like chemical units in metallic alloys , 2021, Science China Materials.

[12]  Junhao Li,et al.  Recent advances in the interfacial stability, design and in situ characterization of garnet-type Li7La3Zr2O12 solid-state electrolytes based lithium metal batteries , 2021 .

[13]  C. Dong,et al.  Composition optimization of high-strength Mg-Gd-Y-Zr alloys based on the structural unit of Mg-Gd solid solution , 2021 .

[14]  G. Yin,et al.  Interrelated interfacial issues between a Li7La3Zr2O12-based garnet electrolyte and Li anode in the solid-state lithium battery: a review , 2021 .

[15]  Guorong Li,et al.  Y and Sb co-doped Li7La3Zr2O12 electrolyte for all solid-state lithium batteries , 2021, Ionics.

[16]  S. Dou,et al.  Prelithiation: A Crucial Strategy for Boosting the Practical Application of Next-Generation Lithium Ion Battery. , 2021, ACS nano.

[17]  J. M. López del Amo,et al.  Crystalline LiPON as a Bulk-Type Solid Electrolyte , 2021 .

[18]  C. Dong,et al.  Composition genes in materials , 2021, Journal of Materials Informatics.

[19]  Qibin Liu,et al.  Design of [Al-(FeCoNi)12]Al Cr3- HEAs based on cluster-plus-glue-atom model and its coating fabricated by laser cladding , 2020 .

[20]  Yaxiong Guo,et al.  A novel biomedical high-entropy alloy and its laser-clad coating designed by a cluster-plus-glue-atom model , 2020 .

[21]  C. Dong,et al.  Composition formula of transparent conductive tin doped indium oxide in terms of cluster plus glue atom model , 2020 .

[22]  M. Abdel Wahab,et al.  A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate , 2020, Engineering with Computers.

[23]  Jixiang Chen,et al.  Structural heritage of metallic glasses and relevant crystals understood via the principal cluster , 2020 .

[24]  Chunsheng Wang,et al.  Lithium/Sulfide All‐Solid‐State Batteries using Sulfide Electrolytes , 2020, Advanced materials.

[25]  Liming Jin,et al.  Progress and perspectives on pre-lithiation technologies for lithium ion capacitors , 2020 .

[26]  Erik A. Wu,et al.  Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes. , 2020, Chemical reviews.

[27]  Hong‐Jie Peng,et al.  Garnet Solid Electrolyte for Advanced All‐Solid‐State Li Batteries , 2020, Advanced Energy Materials.

[28]  C. Dong,et al.  Performance of GH4169 brazed joint using a new designed nickel-based filler metal via cluster-plus-glue-atom model , 2020 .

[29]  L. Archer,et al.  Designing solid-state electrolytes for safe, energy-dense batteries , 2020, Nature Reviews Materials.

[30]  C. Dong,et al.  First-Principles Calculations for Stable β-Ti–Mo Alloys Using Cluster-Plus-Glue-Atom Model , 2020, Acta Metallurgica Sinica (English Letters).

[31]  C. Jin,et al.  Preparation and characterization of Ga and Sr co-doped Li7La3Zr2O12 garnet-type solid electrolyte , 2019, Solid State Ionics.

[32]  Lucun Guo,et al.  Influence of sintering aid on the microstructure and conductivity of the garnet-type W-doped Li7La3Zr2O12 ceramic electrolyte , 2019, Journal of Materials Science: Materials in Electronics.

[33]  Christian Masquelier,et al.  Fundamentals of inorganic solid-state electrolytes for batteries , 2019, Nature Materials.

[34]  Luyi Yang,et al.  Cooperative transport enabling fast Li-ion diffusion in Thio-LISICON Li10SiP2S12 solid electrolyte , 2019, Nano Energy.

[35]  C. Dong,et al.  Exploration of phase structure evolution induced by alloying elements in Ti alloys via a chemical-short-range-order cluster model , 2019, Scientific Reports.

[36]  A. Várez,et al.  Structural, morphology and luminescence study of Er+3-doped garnet-type Li5La3Nb2O12 electrolytes as a potential new phosphor , 2018, Ceramics International.

[37]  Wei Luo,et al.  Promises, Challenges, and Recent Progress of Inorganic Solid‐State Electrolytes for All‐Solid‐State Lithium Batteries , 2018, Advanced materials.

[38]  Shaoqing Wang,et al.  The cluster-plus-glue-atom models of solid solution CuNi alloys: A first-principles study , 2018 .

[39]  C. Dong,et al.  Composition Formulas of Inorganic Compounds in Terms of Cluster Plus Glue Atom Model. , 2018, Inorganic chemistry.

[40]  C. Dong,et al.  Spherical periodicity as structural homology of crystalline and amorphous states , 2018, Science China Materials.

[41]  R. Murugan,et al.  Lithium garnets: Synthesis, structure, Li+ conductivity, Li+ dynamics and applications , 2017 .

[42]  B. Wen,et al.  Composition-structure-property correlations of complex metallic alloys described by the “cluster-plus-glue-atom” model , 2017 .

[43]  Hyun-Wook Lee,et al.  High-capacity battery cathode prelithiation to offset initial lithium loss , 2016, Nature Energy.

[44]  Johannes Kleiner,et al.  Quantum Mathematical Physics , 2016 .

[45]  Xueliang Li,et al.  The formation mechanism of novel Fe–P–B metallic glasses: A perspective from nearly free electron model , 2015 .

[46]  M. Eberhart,et al.  Reactive cluster model of metallic glasses. , 2014, The Journal of chemical physics.

[47]  T. Armbruster,et al.  Crystal Chemistry and Stability of “Li7La3Zr2O12” Garnet: A Fast Lithium‐Ion Conductor. , 2011 .

[48]  C. Dong,et al.  Composition formulae of ideal metallic glasses and their relevant eutectics established by a cluster-resonance model , 2011 .

[49]  Martin Fisch,et al.  Crystal chemistry and stability of "Li7La3Zr2O12" garnet: a fast lithium-ion conductor. , 2011, Inorganic chemistry.

[50]  Y. Idemoto,et al.  Crystal Structure of Fast Lithium-ion-conducting Cubic Li7La3Zr2O12 , 2011 .

[51]  M. Laso,et al.  Dense and nearly jammed random packings of freely jointed chains of tangent hard spheres. , 2008, Physical review letters.

[52]  G. Chen,et al.  Structure and Ionic-Transport Properties of Lithium-Containing Garnets Li3Ln3Te2O12 (Ln = Y, Pr, Nd, Sm−Lu) , 2006 .

[53]  Akira Takeuchi,et al.  Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element , 2005 .

[54]  D. Miracle,et al.  A structural model for metallic glasses , 2004, Microscopy and Microanalysis.

[55]  P. Reinhard,et al.  Crossed beam pump and probe dynamics in metal clusters. , 2004, Physical review letters.

[56]  P. Villars,et al.  Structure Types. Part 1: Space Groups (230) Ia-3d -(219)-F43-c , 2004 .

[57]  E. Bauer-grosse,et al.  New periodic and aperiodic triangular prismatic sheet carbides obtained by crystallization of Mn1−xCx amorphous films and described by the chemical twinning model , 2002 .

[58]  Nakatsuka,et al.  Cation distribution and crystal chemistry of Y3Al5-xGaxO12 (0 , 1999, Acta crystallographica. Section B, Structural science.

[59]  H. Sawada Electron Density Study of Garnets:Z3Al2Si3O12(Z=Mg, Fe, Mn, Ca) and Ca3Fe2Si3O12 , 1999 .

[60]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[61]  H. S. Yoder,et al.  Complete substitution of aluminum for silicon: The system 3MnO · Al2O3 · 3SiO2—3Y2O3 · 5Al2O3 , 1951 .