Observability quadratic characteristic numbers
暂无分享,去创建一个
D. Boutat | L. Boutat-Baddas | J. Barbot | L. Boutat-Baddas | D. Boutat | J.P. Barbot | S. Chabraoui | S. Chabraoui
[1] A. Krener. Approximate linearization by state feedback and coordinate change , 1984 .
[2] Arthur J. Krener,et al. Nonlinear Observer Design in the Siegel Domain Through Coordinate Changes 1 , 2001 .
[3] Driss Boutat,et al. OBSERVABILITY BIFURCATION VERSUS OBSERVING BIFURCATIONS , 2002 .
[4] Pavol Brunovský,et al. A classification of linear controllable systems , 1970, Kybernetika.
[5] C. Kravaris,et al. Nonlinear observer design using Lyapunov's auxiliary theorem , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.
[6] Driss Boutat,et al. Poincaré Normal Form for a Class of Driftless Systems in a One-Dimensional Submanifold Neighborhood , 2002, Math. Control. Signals Syst..
[7] D. Boutat,et al. Quadratic observability normal form , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).
[8] Arthur J. Krener,et al. Extended quadratic controller normal form and dynamic state feedback linearization of nonlinear systems , 1992 .
[9] S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .
[10] Arthur J. Krener,et al. Linearization by output injection and nonlinear observers , 1983 .
[11] Issa Amadou Tall,et al. Feedback Classification of Nonlinear Single-Input Control Systems with Controllable Linearization: Normal Forms, Canonical Forms, and Invariants , 2002, SIAM J. Control. Optim..
[12] Degree Two Normal Forms of Control Systems and the Generalized Legendre Clebsch Condition , 1991 .