Contribution of mitochondrial cox1 intron sequences to the phylogenetics of tribe Orchideae (Orchidaceae): do the distribution and sequence of this intron in orchids also tell us something about its evolution?

In this paper, we use the mitochondrial region cox1 to assess the usefulness of this marker in addressing evolutionary relationships within the tribe Orchideae. Despite the low overall variation uncovered in this region, one good phylogenetic marker was identified. A large group I intron was shared across subtribe Orchidinae and some species ofHabenariinae sensu Dressler. The clades identified in the cox1 tree were weakly supported, but consistent with previous studies based on nuclear ribosomal spacers (nrITS). Moreover, the phylogenetic analysis of the combined cox1/ITS data matrix allowed us to highly improve the resolution of the ITS-only analysis and confirm several previously controversial relationships. A second purpose of this study was to analyse the evolution of the group I cox1 intron in Orchideae. This intron has a patchy distribution in angiosperms that has been claimed to be mostly due to horizontal transfer events. Our results suggest that, despite the differences observed in the co-conversion tracts in the tribe, vertical transfer is more consistent with the observed phylogenetic trees.

[1]  M. Chase,et al.  Barcoding of Plants and Fungi , 2009, Science.

[2]  K. Cameron On the value of nuclear and mitochondrial gene sequences for reconstructing the phylogeny of vanilloid orchids (Vanilloideae, Orchidaceae). , 2009, Annals of botany.

[3]  Y. Watano,et al.  Incongruence among mitochondrial, chloroplast and nuclear gene trees in Pinus subgenus Strobus (Pinaceae) , 2009, Journal of Plant Research.

[4]  Mark W. Chase,et al.  Analysis of Mitochondrial nad1b-c Intron Sequences in Orchidaceae: Utility and Coding of Length-change Characters , 2009 .

[5]  R. Viola,et al.  Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. , 2008, Molecular biology and evolution.

[6]  Jeffrey P. Mower,et al.  Frequent, phylogenetically local horizontal transfer of the cox1 group I Intron in flowering plant mitochondria. , 2008, Molecular biology and evolution.

[7]  H. Linder,et al.  The phylogenetic position of the enigmatic orchid genus Pachites , 2008 .

[8]  S. Renner,et al.  Reevaluation of the cox1 group I intron in Araceae and angiosperms indicates a history dominated by loss rather than horizontal transfer. , 2008, Molecular biology and evolution.

[9]  C. dePamphilis,et al.  Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants , 2007, BMC Evolutionary Biology.

[10]  Dion S. Devey,et al.  Friends or relatives? Phylogenetics and species delimitation in the controversial European orchid genus Ophrys. , 2007, Annals of botany.

[11]  D. Tyteca,et al.  On the monophyly of Dactylorhiza Necker ex Nevski (Orchidaceae): is Coeloglossum viride (L.) Hartman a Dactylorhiza ? , 2006 .

[12]  J. Palmer,et al.  Horizontal gene transfer in plants. , 2006, Journal of experimental botany.

[13]  H. Linder,et al.  Molecular Markers Reject Monophyly of the Subgenera of Satyrium (Orchidaceae) , 2005 .

[14]  Jeffrey P. Mower,et al.  Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Y. Qiu,et al.  Phylogenetic inference in Rafflesiales: the influence of rate heterogeneity and horizontal gene transfer , 2004, BMC Evolutionary Biology.

[16]  Rodrigo Lopez,et al.  Multiple sequence alignment with the Clustal series of programs , 2003, Nucleic Acids Res..

[17]  M. Chase,et al.  Molecular phylogenetics and evolution of Orchidinae and selected Habenariinae (Orchidaceae) , 2003 .

[18]  Jeremy R. deWaard,et al.  Biological identifications through DNA barcodes , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[19]  E. Harley,et al.  Phylogenetic relationships in Disa based on non-coding trnL-trnF chloroplast sequences: evidence of numerous repeat regions. , 2001, American journal of botany.

[20]  M. Chase,et al.  Molecular systematics of Iridaceae: evidence from four plastid DNA regions. , 2001, American journal of botany.

[21]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[22]  A. Widmer,et al.  Molecular phylogenetics of the sexually deceptive orchid genus Ophrys (Orchidaceae) based on nuclear and chloroplast DNA sequences. , 2001, Molecular phylogenetics and evolution.

[23]  W. Kress,et al.  Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences , 2000 .

[24]  Yangrae Cho,et al.  Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  S. Aceto,et al.  Phylogeny and evolution of Orchis and allied genera based on ITS DNA variation: morphological gaps and molecular continuity. , 1999, Molecular phylogenetics and evolution.

[26]  J. Palmer,et al.  Multiple acquisitions via horizontal transfer of a group I intron in the mitochondrial cox1 gene during evolution of the Araceae family. , 1999, Molecular biology and evolution.

[27]  M. Chase,et al.  Molecular phylogenetics of Diseae (Orchidaceae): a contribution from nuclear ribosomal ITS sequences. , 1999, American journal of botany.

[28]  J. Palmer,et al.  Explosive invasion of plant mitochondria by a group I intron. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Laroche,et al.  Molecular evolution of angiosperm mitochondrial introns and exons. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Antony V. Cox,et al.  Phylogenetics of subtribe Orchidinae (Orchidoideae, Orchidaceae) based on nuclear ITS sequences. 1. Intergeneric relationships and polyphyly of Orchis sensu lato , 1997 .

[31]  A. Meyer,et al.  Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates. , 1996, Molecular biology and evolution.

[32]  D. Lunt,et al.  The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies , 1996, Insect molecular biology.

[33]  J. Palmer,et al.  Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric coxI gene of Peperomia , 1995, Journal of Molecular Evolution.

[34]  K. Oda,et al.  Group I introns in the liverwort mitochondrial genome: the gene coding for subunit 1 of cytochrome oxidase shares five intron positions with its fungal counterparts. , 1993, Nucleic acids research.

[35]  B. Dujon,et al.  Group I introns as mobile genetic elements: facts and mechanistic speculations--a review. , 1989, Gene.

[36]  Wen-Hsiung Li,et al.  Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[38]  David C. Tank,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: , 2009 .

[39]  Jeffrey D. Palmer,et al.  Plant mitochondrial DNA evolved rapidly in structure, but slowly in sequence , 2005, Journal of Molecular Evolution.

[40]  M. Chase,et al.  DNA data and archidaceae systematics: A new phylogenetic classification , 2003 .

[41]  J. Huelsenbeck,et al.  MRBAYES : Bayesian inference of phylogeny , 2001 .

[42]  J. Porter,et al.  Phylogenetic Relationships of Polemoniaceae: Inferences From Mitochondrial Nad1b Intron Sequences , 1998 .

[43]  Douglas E. Soltis,et al.  Choosing an Approach and an Appropriate Gene for Phylogenetic Analysis , 1998 .

[44]  Jonathan F. Wendel,et al.  Phylogenetic Incongruence: Window into Genome History and Molecular Evolution , 1998 .

[45]  E. Klein,et al.  Etiam atque etiam--Nigritella versus Gymnadenia: Neukombinationen und Gymnadenia dolomitensis spec. nova (Orchidaceae-Ocrchideae) , 1998 .

[46]  J. Palmer,et al.  Comparison of Chloroplast and Mitochondrial Genome Evolution in Plants , 1992 .

[47]  T. Cech Self-splicing of group I introns. , 1990, Annual review of biochemistry.

[48]  E. Pahlich,et al.  A rapid DNA isolation procedure for small quantities of fresh leaf tissue , 1980 .