An observer-based approach for input-independent global chaos synchronization of discrete-time switched systems

The work presented in this paper deals with chaos synchronization of discrete-time switched systems for communication purposes. In a chaotic masking scheme, the main problem arising lies in the fact that the state-reconstruction-error equation involves a term depending on the embedded information which may prevent the convergence. To tackle such a situation, an input-independent global synchronization (IIGS) observer-based method is proposed. It differs from the standard unknown input observers framework, which cannot be applied for the class of systems considered in this paper. It is shown that IIGS may result from both a special partial-pole placement and the notion of polyquadratic stability. Two configurations are distinguished: a subsystem configuration and an observer one. The analysis in the subsystem configuration or the design in the observer configuration is performed by solving a tractable linear-matrix inequalities setting. Two illustrative examples are given.

[1]  F. Takens Detecting strange attractors in turbulence , 1981 .

[2]  R. W. Wilde,et al.  Observers for linear systems with unknown inputs , 1988 .

[3]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[4]  Carroll,et al.  Driving systems with chaotic signals. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[5]  M. Saif,et al.  A novel approach to the design of unknown input observers , 1991 .

[6]  Alan V. Oppenheim,et al.  ROBUSTNESS AND SIGNAL RECOVERY IN A SYNCHRONIZED CHAOTIC SYSTEM , 1993 .

[7]  Maciej Ogorzalek,et al.  Taming chaos. I. Synchronization , 1993 .

[8]  Chai Wah Wu,et al.  A Simple Way to Synchronize Chaotic Systems with Applications to , 1993 .

[9]  M. Darouach,et al.  Full-order observers for linear systems with unknown inputs , 1994, IEEE Trans. Autom. Control..

[10]  Alberto Tesi,et al.  Dead-beat chaos synchronization in discrete-time systems , 1995 .

[11]  M. Hasler,et al.  Communication by chaotic signals : the inverse system approach , 1996 .

[12]  Alexander L. Fradkov,et al.  On self-synchronization and controlled synchronization , 1997 .

[13]  Shao-Kung Chang,et al.  Design of general structured observers for linear systems with unknown inputs , 1997 .

[14]  J. Suykens,et al.  Robust nonlinear H/sub /spl infin// synchronization of chaotic Lur'e systems , 1997 .

[15]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[16]  Maciej Ogorzalek,et al.  Identification of chaotic systems based on adaptive synchronization , 1997 .

[17]  L. Chua,et al.  Communication Systems via Chaotic Signals from a Reconstruction Viewpoint , 1997 .

[18]  Leon O. Chua,et al.  Robust nonlinear H$_{\infty}$ synchronization of chaotic Lur'e systems , 1997 .

[19]  Martin Hasler,et al.  Synchronization of chaotic systems and transmission of information , 1998 .

[20]  Alexander L. Fradkov,et al.  Introduction to Control of Oscillations and Chaos , 1998 .

[21]  C. Mira,et al.  Coding Scheme Based on Chaos Synchronization from Noninvertible Maps , 1998 .

[22]  Alexander Yu. Pogromsky,et al.  OBSERVER-BASED ROBUST SYNCHRONIZATION OF DYNAMICAL SYSTEMS , 1998 .

[23]  Michael Peter Kennedy,et al.  The role of synchronization in digital communications using chaos. II. Chaotic modulation and chaotic synchronization , 1998 .

[24]  Kenji Sugimoto Partial pole placement by LQ regulators: an inverse problem approach , 1998, IEEE Trans. Autom. Control..

[25]  Henk Nijmeijer,et al.  System identification in communication with chaotic systems , 2000 .

[26]  Guanrong Chen Controlling Chaos and Bifurcations in Engineering Systems , 1999 .

[27]  Teh-Lu Liao,et al.  An observer-based approach for chaotic synchronization with applications to secure communications , 1999 .

[28]  J. Suykens,et al.  Robust synthesis for master-slave synchronization of Lur'e systems , 1999 .

[29]  Kuang-Yow Lian,et al.  Synchronization with message embedded for generalized Lorenz chaotic circuits and its error analysis , 2000 .

[30]  Ricardo Femat,et al.  Adaptive synchronization of high-order chaotic systems: a feedback with low-order parametrization , 2000 .

[31]  Peter Liu,et al.  Discrete-Time Chaotic Systems: Applications in Secure Communications , 2000, Int. J. Bifurc. Chaos.

[32]  G. Millerioux,et al.  Global chaos synchronization and robust filtering in noisy context , 2001 .

[33]  L. Kocarev Chaos-based cryptography: a brief overview , 2001 .

[34]  Neil Munro,et al.  A parametric solution to the pole assignment problem using dynamic output-feedback , 2001, IEEE Transactions on Automatic Control.

[35]  L. Kocarev,et al.  Chaos and cryptography: block encryption ciphers based on chaotic maps , 2001 .

[36]  Toshimitsu Ushio,et al.  Chaos communication using unknown input observers , 2001 .

[37]  C. Mira,et al.  Finite-time global chaos synchronization for piecewise linear maps , 2001 .

[38]  Jamal Daafouz,et al.  Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties , 2001, Syst. Control. Lett..

[39]  Gualberto Solís-Perales,et al.  A chaos-based communication scheme via robust asymptotic feedback , 2001 .

[40]  Henk Nijmeijer,et al.  Nonlinear discrete-Time Synchronization via Extended observers , 2001, Int. J. Bifurc. Chaos.

[41]  Hebertt Sira-Ramírez,et al.  Synchronization of Chaotic Systems: a generalized Hamiltonian Systems Approach , 2001, Int. J. Bifurc. Chaos.

[42]  Hebertt Sira-Ramírez,et al.  Exact State Reconstructors in the Recovery of Messages Encrypted by the States of Nonlinear Discrete-Time Chaotic Systems , 2002, Int. J. Bifurc. Chaos.

[43]  Zhong-Ping Jiang,et al.  A note on chaotic secure communication systems , 2002 .

[44]  Jamal Daafouz,et al.  Poly-quadratic stability and global chaos synchronization of discrete time hybrid systems , 2002, Math. Comput. Simul..

[45]  Jamal Daafouz,et al.  Polytopic Observer for Global Synchronization of Systems with Output Measurable nonlinearities , 2003, Int. J. Bifurc. Chaos.