Implicit large eddy simulation using the high‐order correction procedure via reconstruction scheme

Summary We investigate implicit large eddy simulation of the Taylor–Green vortex, Comte-Bellot–Corrsin experiment, turbulent channel flow and transitional and turbulent flow over an SD7003 airfoil using the high-order unstructured correction procedure via reconstruction (CPR) scheme, also known as the flux reconstruction scheme. We employ P1 (second-order) to P5 (sixth-order) spatial discretizations. Results show that the CPR scheme can accurately predict turbulent flows without the addition of a sub-grid scale model. Numerical dissipation, concentrated at the smallest resolved scales, is found to filter high-frequency content from the solution. In addition, the high-order schemes are found to be more accurate than the low-order schemes on a per degree of freedom basis for the canonical test cases we consider. These results motivate the further investigation and use of the CPR scheme for simulating turbulent flows. Copyright © 2016 John Wiley & Sons, Ltd.

[1]  R. Alexander Diagonally implicit runge-kutta methods for stiff odes , 1977 .

[2]  Rolf Radespiel,et al.  Dynamics of laminar separation bubbles at low-Reynolds-number aerofoils , 2009, Journal of Fluid Mechanics.

[3]  G. Taylor,et al.  Mechanism of the production of small eddies from large ones , 1937 .

[4]  P. Moin,et al.  Turbulence statistics in fully developed channel flow at low Reynolds number , 1987, Journal of Fluid Mechanics.

[5]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .

[6]  Zhi Jian Wang,et al.  A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids , 2009, J. Comput. Phys..

[7]  M. Brachet Direct simulation of three-dimensional turbulence in the Taylor–Green vortex , 1991 .

[8]  Nikolaus A. Adams,et al.  On implicit subgrid-scale modeling in wall-bounded flows , 2007 .

[9]  Alistair Revell,et al.  DESider A European Effort on Hybrid RANS-LES Modelling: Results of the European-Union Funded Project, 2004 - 2007 , 2009 .

[10]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[11]  Miguel R. Visbal,et al.  High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers , 2009 .

[12]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[13]  Ye Zhou,et al.  A note on kinetic energy, dissipation and enstrophy , 1998 .

[14]  John H. Kolias,et al.  A CONSERVATIVE STAGGERED-GRID CHEBYSHEV MULTIDOMAIN METHOD FOR COMPRESSIBLE FLOWS , 1995 .

[15]  U. Piomelli,et al.  Subgrid-Scale Models for Compressible Large-Eddy Simulations , 2000 .

[16]  Uranga Cabrera,et al.  Investigation of transition to turbulence at low Reynolds numbers using Implicit Large Eddy Simulations with a Discontinuous Galerkin method , 2010 .

[17]  R. B. Dean Reynolds Number Dependence of Skin Friction and Other Bulk Flow Variables in Two-Dimensional Rectangular Duct Flow , 1978 .

[18]  S. Corrsin,et al.  Simple Eulerian time correlation of full-and narrow-band velocity signals in grid-generated, ‘isotropic’ turbulence , 1971, Journal of Fluid Mechanics.

[19]  Zhi Jian Wang,et al.  A conservative correction procedure via reconstruction formulation with the Chain-Rule divergence evaluation , 2013, J. Comput. Phys..

[20]  M. Selig,et al.  High-Lift Low Reynolds Number Airfoil Design , 1997 .

[21]  Paul G. Tucker,et al.  Canonical Test Cases for High-Order Unstructured Implicit Large Eddy Simulation , 2014 .

[22]  Ulrich Rist,et al.  Investigations on controlled transition development in a laminar separation bubble by means of LDA and PIV , 2004 .

[23]  P. Moin,et al.  A dynamic localization model for large-eddy simulation of turbulent flows , 1995, Journal of Fluid Mechanics.

[24]  Sanjiva K. Lele,et al.  Large eddy simulation of a Mach 0.9 turbulent jet , 1999 .

[25]  H. T. Huynh,et al.  A Reconstruction Approach to High -Order Schemes Including Discontinuous Galerkin for Diffusion , 2009 .

[26]  Z. Wang,et al.  Implicit Large Eddy Simulation of Low Reynolds Number Transitional Flow over a Wing Using High-Order Spectral Difference Method , 2010 .

[27]  H. T. Huynh,et al.  A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods , 2007 .

[28]  Brian C. Vermeire,et al.  ILES Using the Correction Procedure via Reconstruction Scheme , 2013 .

[29]  Zhi J. Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids. Basic Formulation , 2002 .

[30]  L. Bricteux,et al.  Implicit LES of free and wall‐bounded turbulent flows based on the discontinuous Galerkin/symmetric interior penalty method , 2015 .

[31]  Jessica Gullbrand,et al.  Grid-Independent Large-Eddy Simulation in Turbulent Channel Flow Using Three-Dimensional Explicit Filtering , 2003 .

[32]  Xiaoqin Zhang,et al.  Calibration of model and discretization parameters for turbulent channel flow , 2008 .

[33]  Marcel Vinokur,et al.  Discontinuous Spectral Difference Method for Conservation Laws on Unstructured Grids , 2004 .

[34]  Andrew Pollard,et al.  Evaluation of Turbulence Models Using Direct Numerical and Large-Eddy Simulation Data , 2011 .

[35]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[36]  Koen Hillewaert,et al.  Assessment of a discontinuous Galerkin method for the simulation of vortical flows at high Reynolds number , 2014 .

[37]  Per-Olof Persson,et al.  Implicit Large Eddy Simulation of transition to turbulence at low Reynolds numbers using a Discontinuous Galerkin method , 2011 .

[38]  A. Jameson,et al.  Discrete filter operators for large‐eddy simulation using high‐order spectral difference methods , 2013 .

[39]  F. Grinstein,et al.  Large Eddy simulation of high-Reynolds-number free and wall-bounded flows , 2002 .

[40]  Haiyang Gao,et al.  A High-Order Unifying Discontinuous Formulation for the Navier-Stokes Equations on 3D Mixed Grids , 2011 .

[41]  Antony Jameson,et al.  Insights from von Neumann analysis of high-order flux reconstruction schemes , 2011, J. Comput. Phys..

[42]  W. J. Gordon,et al.  Construction of curvilinear co-ordinate systems and applications to mesh generation , 1973 .

[43]  Petros Koumoutsakos,et al.  A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers , 2011, J. Comput. Phys..

[44]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[45]  Miguel R. Visbal,et al.  Implicit Large Eddy Simulation of Low Reynolds Number Flow Past the SD7003 Airfoil , 2008 .

[46]  Antony Jameson,et al.  A New Class of High-Order Energy Stable Flux Reconstruction Schemes , 2011, J. Sci. Comput..

[47]  C. Meneveau,et al.  Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation , 2003, Journal of Fluid Mechanics.

[48]  Sylvain Lardeau,et al.  Applied large eddy simulation , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[49]  Miguel R. Visbal,et al.  Comparative study of implicit and subgrid‐scale model large‐eddy simulation techniques for low‐Reynolds number airfoil applications , 2013 .

[50]  Zhi J. Wang,et al.  Implicit Large Eddy Simulation of Transitional Flow over a SD7003 Wing Using High-order Spectral Difference Method , 2010 .

[51]  Nikolaus A. Adams,et al.  An adaptive local deconvolution method for implicit LES , 2005, J. Comput. Phys..

[52]  Z. Wang High-order methods for the Euler and Navier–Stokes equations on unstructured grids , 2007 .

[53]  W. J. Gordon,et al.  Transfinite mappings and their application to grid generation , 1982 .

[54]  Rémi Abgrall,et al.  High‐order CFD methods: current status and perspective , 2013 .

[55]  Brian C. Vermeire,et al.  Adaptive IMEX schemes for high-order unstructured methods , 2015, J. Comput. Phys..

[56]  A. Beck,et al.  On the accuracy of high-order discretizations for underresolved turbulence simulations , 2013 .

[57]  Siva Nadarajah,et al.  Adaptive IMEX Time-Stepping for the Correction Procedure via Reconstruction Scheme , 2013 .

[58]  Neil D. Sandham,et al.  Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment , 2000, Journal of Fluid Mechanics.

[59]  S. Orszag,et al.  Small-scale structure of the Taylor–Green vortex , 1983, Journal of Fluid Mechanics.

[60]  Paul G. Tucker,et al.  LES of Impingement Heat Transfer on a Concave Surface , 2010 .

[61]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[62]  John A. Ekaterinaris,et al.  High-order accurate, low numerical diffusion methods for aerodynamics , 2005 .