Quadric Surface Extraction by Variational Shape Approximation

Based on Lloyd iteration, we present a variational method for extracting general quadric surfaces from a 3D mesh surface. This work extends the previous variational methods that extract only planes or special types of quadrics, i.e., spheres and circular cylinders. Instead of using the exact L2 error metric, we use a new approximate L2 error metric to make our method more efficient for computing with general quadrics. Furthermore, a method based on graph cut is proposed to smooth irregular boundary curves between segmented regions, which greatly improves the final results.

[1]  Hans-Peter Seidel,et al.  Mesh scissoring with minima rule and part salience , 2005, Comput. Aided Geom. Des..

[2]  Ariel Shamir A formulation of boundary mesh segmentation , 2004, Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004..

[3]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[4]  Ross T. Whitaker,et al.  Partitioning 3D Surface Meshes Using Watershed Segmentation , 1999, IEEE Trans. Vis. Comput. Graph..

[5]  Karan Singh,et al.  Extraction and remeshing of ellipsoidal representations from mesh data , 2005, Graphics Interface.

[6]  Hao Zhang,et al.  Segmentation of 3D meshes through spectral clustering , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[7]  Helmut Pottmann,et al.  Constrained 3D shape reconstruction using a combination of surface fitting and registration , 2006, Comput. Aided Des..

[8]  Gabriel Taubin,et al.  Estimation of Planar Curves, Surfaces, and Nonplanar Space Curves Defined by Implicit Equations with Applications to Edge and Range Image Segmentation , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Pedro V. Sander,et al.  Multi-Chart Geometry Images , 2003, Symposium on Geometry Processing.

[10]  Leif Kobbelt,et al.  Structure Recovery via Hybrid Variational Surface Approximation , 2005, Comput. Graph. Forum.

[11]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Atilla Baskurt,et al.  A new CAD mesh segmentation method, based on curvature tensor analysis , 2005, Comput. Aided Des..

[13]  Gabriel Taubin,et al.  An improved algorithm for algebraic curve and surface fitting , 1993, 1993 (4th) International Conference on Computer Vision.

[14]  Leif Kobbelt,et al.  Automatic Generation of Structure Preserving Multiresolution Models , 2005, Comput. Graph. Forum.

[15]  Ayellet Tal,et al.  Mesh segmentation using feature point and core extraction , 2005, The Visual Computer.

[16]  TalAyellet,et al.  Hierarchical mesh decomposition using fuzzy clustering and cuts , 2003 .

[17]  Andrew W. Fitzgibbon,et al.  High-level model acquisition from range images , 1997, Comput. Aided Des..

[18]  Marco Attene,et al.  Hierarchical mesh segmentation based on fitting primitives , 2006, The Visual Computer.

[19]  Hans-Jürgen Warnecke,et al.  Orthogonal Distance Fitting of Implicit Curves and Surfaces , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Mathieu Desbrun,et al.  Variational shape approximation , 2004, SIGGRAPH 2004.

[21]  Jian Sun,et al.  Lazy snapping , 2004, SIGGRAPH 2004.

[22]  Alla Sheffer,et al.  D‐Charts: Quasi‐Developable Mesh Segmentation , 2005, Comput. Graph. Forum.

[23]  Ayellet Tal,et al.  Hierarchical mesh decomposition using fuzzy clustering and cuts , 2003, ACM Trans. Graph..

[24]  Ramesh C. Jain,et al.  Segmentation through Variable-Order Surface Fitting , 1988, IEEE Trans. Pattern Anal. Mach. Intell..