Solution-based adaptive mesh redistribution applied to harmonic balance solvers

Abstract A primary source of inaccuracy in numerical simulations is due to errors that are introduced into the solution via the discretization of the continuous governing equations over the computational domain. By increasing the grid resolution in regions with high flow gradients and large curvatures using a solution-adaptive approach, these discretization errors can be reduced. In this paper, an adaptive mesh technique is presented that can efficiently cluster the grid nodes in sensitive regions by redistribution and relocation of the grid nodes. This adaptive technique is specifically important to unsteady periodic flow cases where the length scales of the flow features (such as shocks, boundary layer, and separation zones) can differ between time instances. The proposed technique is developed – for the first time in the literature – for a harmonic balance method to efficiently model unsteady periodic flows. To study the performance of the proposed technique in improving the accuracy of the flow solver, steady and unsteady flow cases are studied. Numerical results show that the adaptive mesh redistribution technique is capable of efficiently increasing the accuracy of the numerical solver with a relatively low computational overhead.

[1]  Charbel Farhat,et al.  Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations , 1996 .

[2]  J. Brackbill,et al.  Adaptive zoning for singular problems in two dimensions , 1982 .

[3]  Kivanc Ekici,et al.  Stabilization of Explicit Flow Solvers Using a Proper-Orthogonal-Decomposition Technique , 2013 .

[4]  Juan J. Alonso,et al.  Prediction of Helicopter Rotor Loads Using Time-Spectral Computational Fluid Dynamics and an Exact Fluid-Structure Interface , 2011 .

[5]  K. Ekici,et al.  A discrete adjoint harmonic balance method for turbomachinery shape optimization , 2014 .

[6]  Mark Woodgate,et al.  Implicit computational fluid dynamics methods for fast analysis of rotor flows , 2012 .

[7]  Alberto Guardone,et al.  An interpolation-free ALE scheme for unsteady inviscid flows computations with large boundary displacements over three-dimensional adaptive grids , 2017, J. Comput. Phys..

[8]  Jiri Blazek,et al.  Computational Fluid Dynamics: Principles and Applications , 2001 .

[9]  Jernej Drofelnik,et al.  Harmonic balance Navier-Stokes aerodynamic analysis of horizontal axis wind turbines in yawed wind , 2018 .

[10]  C. R. Ethier,et al.  A semi-torsional spring analogy model for updating unstructured meshes in 3D moving domains , 2005 .

[11]  Charbel Farhat,et al.  A three-dimensional torsional spring analogy method for unstructured dynamic meshes , 2002 .

[12]  François Fraysse,et al.  An adjoint-truncation error based approach for goal-oriented mesh adaptation , 2015 .

[13]  K. Ekici,et al.  Unsteady Analysis of Wind Turbine Flows Using the Harmonic Balance Method , 2013 .

[14]  Carlo L. Bottasso,et al.  A unified approach to the deformation of simplicial and non-simplicial meshes in two and three dimensions with guaranteed validity , 2007 .

[15]  Philip Browne,et al.  Fast three dimensional r-adaptive mesh redistribution , 2014, J. Comput. Phys..

[16]  Ming Li,et al.  On the Geometric Conservation Law for Unsteady Flow Simulations on Moving Mesh , 2015 .

[17]  H. Bijl,et al.  Mesh deformation based on radial basis function interpolation , 2007 .

[18]  F. Blom Considerations on the spring analogy , 2000 .

[19]  Kivanc Ekici,et al.  Stabilization of High-Dimensional Harmonic Balance Solvers Using Time Spectral Viscosity , 2014 .

[20]  Carlo L. Bottasso,et al.  The ball-vertex method: a new simple spring analogy method for unstructured dynamic meshes , 2005 .

[21]  Jason Howison,et al.  Dynamic stall analysis using harmonic balance and correlation-based γ– Reθt¯ transition models for wind turbine applications† , 2015 .

[22]  K. Ekici,et al.  Resolution of Gibbs phenomenon using a modified pseudo-spectral operator in harmonic balance CFD solvers* , 2016 .

[23]  Zhenqun Guan,et al.  Vertex-Ball Spring Smoothing: An efficient method for unstructured dynamic hybrid meshes , 2014 .

[24]  Bevan W S Jones Mesh adaptation through r-refinement using a truss network analogy , 2015 .

[25]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[26]  M. McMullen,et al.  The application of non-linear frequency domain methods to the Euler and Navier-Stokes equations , 2003 .

[27]  Clarence O. E. Burg,et al.  A Robust Unstructured Grid Movement Strategy using Three-Dimensional Torsional Springs , 2004 .

[28]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[29]  A. Huerta,et al.  Arbitrary Lagrangian–Eulerian Methods , 2004 .

[30]  C. Farhat,et al.  Torsional springs for two-dimensional dynamic unstructured fluid meshes , 1998 .

[31]  Kivanc Ekici,et al.  Nonlinear Analysis of Unsteady Flows in Multistage Turbomachines Using Harmonic Balance , 2007 .

[32]  Travis J. Carrigan,et al.  Reducing the Computational Cost of Viscous Mesh Adaptation , 2017 .

[33]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[34]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[35]  D. G. Mabey,et al.  A summary of measurements of steady and oscillatory pressures on a rectangular wing , 1988, The Aeronautical Journal (1968).

[36]  Kivanc Ekici,et al.  An efficient harmonic balance method for unsteady flows in cascades , 2013 .

[37]  V. Venkatakrishnan Convergence to steady state solutions of the Euler equations on unstructured grids with limiters , 1995 .

[38]  Siva Nadarajah,et al.  Three-Dimensional Aeroelastic Solutions via the Nonlinear Frequency-Domain Method , 2017 .

[39]  Wind Turbine Dynamic Stall Analysis Using Harmonic Balance and Correlation-based Transition Models , 2013 .

[40]  Lei Zhao,et al.  A Parallel Unstructured Finite-Volume Method for All-Speed Flows , 2014 .

[41]  Christian B. Allen,et al.  Efficient mesh motion using radial basis functions with data reduction algorithms , 2008, J. Comput. Phys..

[42]  David L. Marcum,et al.  A 3-D unstructured CFD method for dynamic motion , 1999 .

[43]  Robert D. Russell,et al.  Adaptivity with moving grids , 2009, Acta Numerica.

[44]  Kelly R. Laflin Solver-independent r-refinement adaptation for dynamic numerical simulations , 1997 .

[45]  D. Scott McRae,et al.  r-Refinement grid adaptation algorithms and issues , 2000 .

[46]  C. D. Boor,et al.  Good approximation by splines with variable knots. II , 1974 .

[47]  P. Thomas,et al.  Geometric Conservation Law and Its Application to Flow Computations on Moving Grids , 1979 .

[48]  R. H. Landon,et al.  NACA 0012 Oscillatory and Transient Pitching , 2000 .

[49]  Ken Badcock,et al.  Linear Frequency Domain and Harmonic Balance Predictions of Dynamic Derivatives , 2010 .

[50]  Jeffrey P. Thomas,et al.  Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique , 2002 .

[51]  V. Venkatakrishnan Newton solution of inviscid and viscous problems , 1988 .

[52]  Christopher J. Roy,et al.  Comparison of r-Adaptation Techniques for 2-D CFD Applications , 2015 .

[53]  Rusty A. Benson,et al.  A solution-adaptive mesh algorithm for dynamic/static refinement of two and three dimensional grids , 1991 .

[54]  John C. Vassberg,et al.  In Pursuit of Grid Convergence for Two-Dimensional Euler Solutions , 2009 .

[55]  Kivanc Ekici,et al.  A fully coupled turbulent low-speed preconditioner for harmonic balance applications , 2016 .

[56]  Giovanni Ferrara,et al.  Darrieus wind turbine blade unsteady aerodynamics:a three-dimensional Navier-Stokes CFD assessment , 2017 .

[57]  Earl H. Dowell,et al.  Computationally fast harmonic balance methods for unsteady aerodynamic predictions of helicopter rotors , 2008, J. Comput. Phys..

[58]  J. Batina Unsteady Euler airfoil solutions using unstructured dynamic meshes , 1989 .