Decentralized adaptive fuzzy sliding mode control for reconfigurable modular manipulators

A stable decentralized adaptive fuzzy sliding mode control scheme is proposed for reconfigurable modular manipulators to satisfy the concept of modular software. For the development of the decentralized control, the dynamics of reconfigurable modular manipulators is represented as a set of interconnected subsystems. A first-order Takagi–Sugeno fuzzy logic system is introduced to approximate the unknown dynamics of subsystem by using adaptive algorithm. The effect of interconnection term and fuzzy approximation error is removed by employing an adaptive sliding mode controller. All adaptive algorithms in the subsystem controller are derived from the sense of Lyapunov stability analysis, so that resulting closed-loop system is stable and the trajectory tracking performance is guaranteed. The simulation results are presented to show the effectiveness of the proposed decentralized control scheme. Copyright © 2009 John Wiley & Sons, Ltd.

[1]  Guilin Yang,et al.  Local POE model for robot kinematic calibration , 2001 .

[2]  Andrew A. Goldenberg,et al.  Neurofuzzy control of modular and reconfigurable robots , 2003 .

[3]  Z. M. Bi,et al.  Concurrent optimal design of modular robotic configuration , 2001 .

[4]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  Takafumi Matsumaru,et al.  Design and control of the modular robot system: TOMMS , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[6]  Chun-Yi Su,et al.  Variable structure control of robotic manipulator with PID sliding surfaces , 1998 .

[7]  Li-Xin Wang Stable adaptive fuzzy control of nonlinear systems , 1993, IEEE Trans. Fuzzy Syst..

[8]  Guang Chen,et al.  Kernel for Modular Robot Applications: Automatic Modeling Techniques , 1999, Int. J. Robotics Res..

[9]  Pradeep K. Khosla,et al.  Rapid development of robotic applications using component-based real-time software , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[10]  Christiaan J. J. Paredis,et al.  A rapidly deployable manipulator system , 1997, Robotics Auton. Syst..

[11]  Chih-Lyang Hwang A novel Takagi-Sugeno-based robust adaptive fuzzy sliding-mode controller , 2004, IEEE Transactions on Fuzzy Systems.

[12]  M. de Mathelin,et al.  Robust control of robot manipulators: A survey , 1999 .

[13]  Guilin Yang,et al.  Numerical inverse kinematics for modular reconfigurable robots , 1999 .

[14]  Juan Luis Castro,et al.  Fuzzy logic controllers are universal approximators , 1995, IEEE Trans. Syst. Man Cybern..

[15]  Li-Chen Fu,et al.  A fully adaptive decentralized control of robot manipulators , 2006, Autom..

[16]  Li-Chen Fu,et al.  Adaptive decentralized control of robot manipulators driven by current-fed induction motors , 2005 .

[17]  Yu Tang,et al.  Decentralized robust control of robot manipulators , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[18]  Masayoshi Tomizuka,et al.  Decentralized robust control of mechanical systems , 2000, IEEE Trans. Autom. Control..

[19]  Jian-Qi Wang Robust decentralized control of robot manipulators , 1999, Int. J. Syst. Sci..

[20]  Chen Bin,et al.  Fuzzy adaptive output feedback control for MIMO nonlinear systems , 2005, Fuzzy Sets Syst..

[21]  Heinz Unbehauen,et al.  An adaptive fuzzy sliding-mode controller , 2001, IEEE Trans. Ind. Electron..

[22]  Ming Liu,et al.  Decentralized control of robot manipulators: nonlinear and adaptive approaches , 1999, IEEE Trans. Autom. Control..

[23]  Christiaan J. J. Paredis,et al.  Designing Fault-Tolerant Manipulators: How Many Degrees of Freedom? , 1996, Int. J. Robotics Res..