Automatic face detection in video sequences using local normalization and optimal adaptive correlation techniques

Automatic human face detection from video sequences is an important component of intelligent human computer interaction systems for video surveillance, face recognition, emotion recognition and face database management. This paper proposes an automatic and robust method to detect human faces from video sequences that combines feature extraction and face detection based on local normalization, Gabor wavelets transform and Adaboost algorithm. The key step and the main contribution of this work is the incorporation of a normalization technique based on local histograms with optimal adaptive correlation (OAC) technique to alleviate a common problem in conventional face detection methods: inconsistent performance due to sensitivity to variation illuminations such as local shadowing, noise and occlusion. The approach uses a cascade of classifiers to adopt a coarse-to-fine strategy for achieving higher detection rates with lower false positives. The experimental results demonstrate a significant performance improvement gains and achieved by local normalization over methods without normalizations in real video sequences with a wide range of facial variations in color, position, scale, and varying lighting conditions.

[1]  Erik Hjelmås,et al.  Face Detection: A Survey , 2001, Comput. Vis. Image Underst..

[2]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[3]  Christophe Garcia,et al.  Convolutional face finder: a neural architecture for fast and robust face detection , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Paul A. Viola,et al.  Robust Real-time Object Detection , 2001 .

[5]  Liyanage C. De Silva,et al.  Multimodal Approach to Human-Face Detection and Tracking , 2008, IEEE Transactions on Industrial Electronics.

[6]  Meng Joo Er,et al.  Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[7]  Xiaoyang Tan,et al.  Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions , 2007, IEEE Transactions on Image Processing.

[8]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[9]  Roberto Cipolla,et al.  An Illumination Invariant Face Recognition System for Access Control using Video , 2004, BMVC.

[10]  Anil K. Jain,et al.  Face Detection in Color Images , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Xiaofang Zhou,et al.  Automatic real-time face detection and tracking based on space-temporal mutual feedback for video sequence , 2008, 2008 International Conference on Audio, Language and Image Processing.

[12]  Tomaso A. Poggio,et al.  Example-Based Learning for View-Based Human Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Ronen Basri,et al.  Lambertian Reflectance and Linear Subspaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Federico Girosi,et al.  Training support vector machines: an application to face detection , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Henry Schneiderman,et al.  Learning Statistical Structure for Object Detection , 2003, CAIP.

[16]  Mingjing Li,et al.  Robust multipose face detection in images , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[17]  Venu Govindaraju,et al.  Locating human faces in photographs , 1996, International Journal of Computer Vision.

[18]  Cordelia Schmid,et al.  Face Detection and Tracking in a Video by Propagating Detection Probabilities , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Narendra Ahuja,et al.  Detecting Faces in Images: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Murray Eden,et al.  Fundamentals of Digital Optics , 1996 .

[21]  Bo Wu,et al.  Fast rotation invariant multi-view face detection based on real Adaboost , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[22]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[23]  David G. Stork,et al.  Pattern Classification , 1973 .

[24]  A. Sheikholeslami,et al.  Real-time face detection and lip feature extraction using field-programmable gate arrays , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[25]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  W. Zheng,et al.  Facial expression recognition using kernel canonical correlation analysis (KCCA) , 2006, IEEE Transactions on Neural Networks.

[27]  Y. Freund,et al.  Discussion of the Paper \additive Logistic Regression: a Statistical View of Boosting" By , 2000 .

[28]  Chengjun Liu,et al.  A Bayesian Discriminating Features Method for Face Detection , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Michael G. Strintzis,et al.  Face localization and authentication using color and depth images , 2005, IEEE Transactions on Image Processing.

[30]  Alexander Vezhnevets,et al.  ‘ Modest AdaBoost ’ – Teaching AdaBoost to Generalize Better , 2005 .

[31]  Abdesselam Bouzerdoum,et al.  Skin segmentation using color pixel classification: analysis and comparison , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Takeo Kanade,et al.  Probabilistic modeling of local appearance and spatial relationships for object recognition , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[34]  Hichem Sahbi,et al.  Face detection using coarse-to-fine support vector classifiers , 2002, Proceedings. International Conference on Image Processing.

[35]  Ravi Ramamoorthi,et al.  Analytic PCA Construction for Theoretical Analysis of Lighting Variability in Images of a Lambertian Object , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  T. Kuroda,et al.  A 0.79-${\hbox {mm}}^{2}$ 29-mW Real-Time Face Detection Core , 2007, IEEE Journal of Solid-State Circuits.

[37]  Shengcai Liao,et al.  Illumination Invariant Face Recognition Using Near-Infrared Images , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  C. Chen,et al.  Detection of human faces in colour images , 1997 .

[39]  Raphaël Féraud,et al.  A Fast and Accurate Face Detector Based on Neural Networks , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Shamik Sural,et al.  Graph-Based Multiplayer Detection and Tracking in Broadcast Soccer Videos , 2008, IEEE Transactions on Multimedia.

[41]  V. Bhagavatula Real-Time Face Detection and Motion Analysis With Application in "Liveness" Assessment , 2007 .

[42]  Xiuwen Liu,et al.  Face detection using spectral histograms and SVMs , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).