Neutrality in the Graph Coloring Problem

In this paper, the neutrality of some hard instances of the graph coloring problem GCP is quantified. This neutrality property has to be detected as it impacts the search process. Indeed, local optima may belong to plateaus that represent a barrier for local search methods. Then, we also aim at pointing out the interest of exploiting neutrality during the search. Therefore, a generic local search dedicated to neutral problems, NILS, is performed on several hard instances.

[1]  Sébastien Vérel,et al.  On the Neutrality of Flowshop Scheduling Fitness Landscapes , 2011, LION.

[2]  Nicolas Zufferey,et al.  Graph colouring approaches for a satellite range scheduling problem , 2008, J. Sched..

[3]  Alain Hertz,et al.  A survey of local search methods for graph coloring , 2004, Comput. Oper. Res..

[4]  Antonella Carbonaro,et al.  An ANTS heuristic for the frequency assignment problem , 2000, Future Gener. Comput. Syst..

[5]  Alain Hertz,et al.  Using tabu search techniques for graph coloring , 1987, Computing.

[6]  D. Werra,et al.  Some experiments with simulated annealing for coloring graphs , 1987 .

[7]  Sébastien Vérel,et al.  Scuba search: when selection meets innovation , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[8]  Thomas Stützle,et al.  An Experimental Investigation of Iterated Local Search for Coloring Graphs , 2002, EvoWorkshops.

[9]  Hakan Yildiz,et al.  A Large Neighborhood Search Heuristic for Graph Coloring , 2007, CPAIOR.

[10]  Jin-Kao Hao,et al.  An evolutionary approach with diversity guarantee and well-informed grouping recombination for graph coloring , 2010, Comput. Oper. Res..

[11]  P. Stadler Landscapes and their correlation functions , 1996 .

[12]  Bernd Freisleben,et al.  Memetic Algorithms for the Traveling Salesman Problem , 2002, Complex Syst..

[13]  Daniel Brélaz,et al.  New methods to color the vertices of a graph , 1979, CACM.

[14]  Sébastien Vérel,et al.  Fitness landscape of the cellular automata majority problem: View from the "Olympus" , 2007, Theor. Comput. Sci..

[15]  Khaled Mellouli,et al.  The k-coloring fitness landscape , 2011, J. Comb. Optim..

[16]  Christian M. Reidys,et al.  Neutrality in fitness landscapes , 2001, Appl. Math. Comput..

[17]  Sébastien Vérel,et al.  NILS: A Neutrality-Based Iterated Local Search and Its Application to Flowshop Scheduling , 2011, EvoCOP.

[18]  Jin-Kao Hao,et al.  A search space "cartography" for guiding graph coloring heuristics , 2010, Comput. Oper. Res..

[19]  Michele Vendruscolo,et al.  Statistical Properties of Neutral Evolution , 2002, Journal of Molecular Evolution.

[20]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[21]  E. Weinberger,et al.  Correlated and uncorrelated fitness landscapes and how to tell the difference , 1990, Biological Cybernetics.

[22]  Charles Fleurent,et al.  Genetic and hybrid algorithms for graph coloring , 1996, Ann. Oper. Res..

[23]  Keith D. Cooper,et al.  Improvements to graph coloring register allocation , 1994, TOPL.

[24]  Laetitia Vermeulen-Jourdan,et al.  Fitness Landscape Analysis and Metaheuristics Efficiency , 2013, J. Math. Model. Algorithms.

[25]  Alain Hertz,et al.  A variable neighborhood search for graph coloring , 2003, Eur. J. Oper. Res..

[26]  Bernd Freisleben,et al.  Fitness landscape analysis and memetic algorithms for the quadratic assignment problem , 2000, IEEE Trans. Evol. Comput..

[27]  Claus O. Wilke,et al.  Adaptive evolution on neutral networks , 2001, Bulletin of mathematical biology.

[28]  Giuseppe F. Italiano,et al.  CHECKCOL: Improved local search for graph coloring , 2006, J. Discrete Algorithms.