The stochastic Weiss conjecture for bounded analytic semigroups

Suppose A admits a bounded H 1 -calculus of angle less than =2 on a Banach space E which has Pisier's property ( ), let B be a bounded linear operator from a Hilbert space H into the extrapolation space E 1 of E with respect to A, and let WH denote an H-cylindrical Brownian motion. Let (H;E) denote the space of all -radonifying operators from H to E. We prove that the following assertions are equivalent: (a) the stochastic Cauchy problem dU(t) = AU(t)dt + B dWH (t) admits an invariant measure on E; (b) ( A) 1 = 2B2 (H;E); (c) the Gaussian sum P n2Z n2 n =2R(2n;A)B converges in (H;E) in prob- ability. This solves the stochastic Weiss conjecture of (8).

[1]  R. Nagel,et al.  Functional Analytic Methods for Evolution Equations , 2004 .

[2]  Hans Zwart,et al.  Weak admissibility does not imply admissibility for analytic semigroups , 2003, Syst. Control. Lett..

[3]  Sonja G. Cox,et al.  Stochastic integration in quasi-Banach spaces , 2006, Studia Mathematica.

[4]  C. L. Merdy,et al.  ON SQUARE FUNCTIONS ASSOCIATED TO SECTORIAL OPERATORS , 2004 .

[5]  Hans Zwart,et al.  Counterexamples Concerning Observation Operators for C0-Semigroups , 2004, SIAM J. Control. Optim..

[6]  J. Neerven,et al.  Stochastic Integration of Operator-Valued Functions with Respect to Banach Space-Valued Brownian Motion , 2008 .

[7]  M. Cowling,et al.  Banach space operators with a bounded H∞ functional calculus , 1996, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[8]  J. Neerven,et al.  Stochastic integration of functions with values in a Banach space , 2005 .

[9]  J. Neerven,et al.  Invariant measures for the linear stochastic Cauchy problem and R-boundedness of the resolvent , 2006 .

[10]  Transition Semigroups of Banach Space-Valued Ornstein–Uhlenbeck Processes , 2003, math/0606785.

[11]  Christian Le Merdy,et al.  The Weiss Conjecture for Bounded Analytic Semigroups , 2003 .

[12]  Markus Haase,et al.  The Functional Calculus for Sectorial Operators , 2006 .

[13]  C. Merdy H^\infty functional calculus and square function estimates for Ritt operators , 2012, 1202.0768.

[14]  Lutz Weis,et al.  Operator–valued Fourier multiplier theorems and maximal $L_p$-regularity , 2001 .

[15]  Z. Brzeźniak,et al.  Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem , 2000 .

[16]  The $H^{\infty}-$calculus and sums of closed operators , 2000, math/0010155.

[17]  L. Weis,et al.  Maximal Lp-regularity for Parabolic Equations, Fourier Multiplier Theorems and $H^\infty$-functional Calculus , 2004 .

[18]  L. Weis,et al.  Perturbation theorems for maximal $L_p$-regularity , 2001 .

[19]  Jonathan R. Partington,et al.  ADMISSIBLE AND WEAKLY ADMISSIBLE OBSERVATION OPERATORS FOR THE RIGHT SHIFT SEMIGROUP , 2002, Proceedings of the Edinburgh Mathematical Society.

[20]  N. Kalton,et al.  The H ∞ −calculus and sums of closed operators , 2001 .

[21]  K. Elworthy ERGODICITY FOR INFINITE DIMENSIONAL SYSTEMS (London Mathematical Society Lecture Note Series 229) By G. Da Prato and J. Zabczyk: 339 pp., £29.95, LMS Members' price £22.47, ISBN 0 521 57900 7 (Cambridge University Press, 1996). , 1997 .

[22]  Jonathan R. Partington,et al.  The Weiss conjecture on admissibility of observation operators for contraction semigroups , 2001 .

[23]  Robert Denk,et al.  Fourier multipliers and problems of elliptic and parabolic type , 2003 .

[24]  Jerzy Zabczyk,et al.  Ergodicity for Infinite Dimensional Systems: Appendices , 1996 .

[25]  George Weiss Two conjectures on the admissibility of control operators , 1991 .

[26]  F. Sukochev,et al.  Schauder decompositions and multiplier theorems , 2000 .

[27]  Bernhard H. Haak,et al.  Uniformly gamma-radonifying families of operators and and the stochastic Weiss conjecture , 2006, math/0611724.

[28]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[29]  G. Godefroy,et al.  The H∞-Functional Calculus and Square Function Estimates , 2015 .

[30]  Bernhard H. Haak,et al.  UNIFORMLY -RADONIFYING FAMILIES OF OPERATORS AND THE STOCHASTIC WEISS CONJECTURE , 2012 .

[31]  J. Neerven γ-Radonifying Operators: A Survey , 2010 .

[32]  N. Kalton,et al.  Perturbation and Interpolation Theorems for the H∞-Calculus with Applications to Differential Operators , 2006 .

[33]  Gilles Pisier,et al.  Some results on Banach spaces without local unconditional structure , 1978 .

[34]  L. Weis,et al.  Erratum to: Perturbation and interpolation theorems for the H∞-calculus with applications to differential operators , 2013, Mathematische Annalen.