Generalized S-Estimators

Abstract In this article we introduce a new type of positive-breakdown regression method, called a generalized S-estimator (or GS-estimator), based on the minimization of a generalized M-estimator of residual scale. We compare the class of GS-estimators with the usual S-estimators, including least median of squares. It turns out that GS-estimators attain a much higher efficiency than S-estimators, at the cost of a slightly increased worst-case bias. We investigate the breakdown point, the maxbias curve, and the influence function of GS-estimators. We also give an algorithm for computing GS-estimators and apply it to real and simulated data.

[1]  Peter J. Rousseeuw,et al.  Asymptotics of Generalized S-Estimators , 1994 .

[2]  Arnold J. Stromberg,et al.  Computing the Exact Least Median of Squares Estimate and Stability Diagnostics in Multiple Linear Regression , 1993, SIAM J. Sci. Comput..

[3]  Peter J. Rousseeuw,et al.  A resampling design for computing high-breakdown regression , 1993 .

[4]  D. G. Simpson,et al.  Lower Bounds for Contamination Bias: Globally Minimax Versus Locally Linear Estimation , 1993 .

[5]  P. Rousseeuw,et al.  Alternatives to the Median Absolute Deviation , 1993 .

[6]  Optimally bounding a generalized gross error sensitivity of unbounded influence M-estimates of regression , 1992 .

[7]  D. Ruppert Computing S Estimators for Regression and Multivariate Location/Dispersion , 1992 .

[8]  Ola Hössjer,et al.  On the optimality of S-estimators☆ , 1992 .

[9]  Sonia V. T Mazzi A new measure of quantitative robustness , 1992 .

[10]  Peter J. Rousseeuw,et al.  Time-Efficient Algorithms for Two Highly Robust Estimators of Scale , 1992 .

[11]  P. Rousseeuw,et al.  Least median of squares estimation in power systems , 1991 .

[12]  Peter J. Rousseeuw,et al.  Robustness of the p-Subset Algorithm for Regression with High Breakdown Point , 1991 .

[13]  P. Rousseeuw,et al.  Unmasking Multivariate Outliers and Leverage Points , 1990 .

[14]  V. Yohai,et al.  Min-Max Bias Robust Regression. , 1989 .

[15]  V. Yohai,et al.  High Breakdown-Point Estimates of Regression by Means of the Minimization of an Efficient Scale , 1988 .

[16]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[17]  V. Yohai HIGH BREAKDOWN-POINT AND HIGH EFFICIENCY ROBUST ESTIMATES FOR REGRESSION , 1987 .

[18]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[19]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[20]  R. Serfling Generalized $L-, M-$, and $R$-Statistics , 1984 .

[21]  W. Härdle,et al.  Robust and Nonlinear Time Series Analysis , 1984 .

[22]  Peter J. Rousseeuw,et al.  ROBUST REGRESSION BY MEANS OF S-ESTIMATORS , 1984 .