The hypergraph regularity method and its applications.
暂无分享,去创建一个
V. Rödl | Y. Kohayakawa | M. Schacht | B. Nagle | J. Skokan
[1] A. Hales,et al. Regularity and Positional Games , 1963 .
[2] E. Szemerédi. On sets of integers containing k elements in arithmetic progression , 1975 .
[3] H. Furstenberg. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .
[4] H. Furstenberg,et al. An ergodic Szemerédi theorem for commuting transformations , 1978 .
[5] Andrew Thomason,et al. Pseudo-random hypergraphs , 1989, Discret. Math..
[6] Fan Chung Graham,et al. Quasi-Random Hypergraphs , 1990, Random Struct. Algorithms.
[7] F. Chung. Quasi-random classes of hypergraphs , 1990 .
[8] H. Furstenberg,et al. A density version of the Hales-Jewett theorem , 1991 .
[9] R. Graham,et al. Quasi-random set systems , 1991 .
[10] Vitaly Bergelson,et al. Polynomial extensions of van der Waerden’s and Szemerédi’s theorems , 1996 .
[11] W. T. Gowers,et al. Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .
[12] Alan M. Frieze,et al. Quick Approximation to Matrices and Applications , 1999, Comb..
[13] Vojtech Rödl,et al. An Algorithmic Regularity Lemma for Hypergraphs , 2000, SIAM J. Comput..
[14] János Komlós,et al. The Regularity Lemma and Its Applications in Graph Theory , 2000, Theoretical Aspects of Computer Science.
[15] W. T. Gowers,et al. A new proof of Szemerédi's theorem , 2001 .
[16] Vojtech Rödl,et al. The asymptotic number of triple systems not containing a fixed one , 2001, Discret. Math..
[17] Vojtech Rödl,et al. Extremal problems on set systems , 2002, Random Struct. Algorithms.
[18] A. Shokoufandeh,et al. Theoretical Aspects of Computer Science , 2002, Lecture Notes in Computer Science.
[19] Jiri Matousek,et al. Lectures on discrete geometry , 2002, Graduate texts in mathematics.
[20] Yoshiharu Kohayakawa,et al. Hypergraphs, Quasi-randomness, and Conditions for Regularity , 2002, J. Comb. Theory, Ser. A.
[21] I. Bárány. LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .
[22] Vojtech Rödl,et al. Regularity properties for triple systems , 2003, Random Struct. Algorithms.
[23] József Solymosi,et al. A Note on a Question of Erdős and Graham , 2004, Combinatorics, Probability and Computing.
[24] ACTA ARITHMETICA , 2022 .