LOW-FREQUENCY OBSERVATIONS OF THE MOON WITH THE MURCHISON WIDEFIELD ARRAY

A new generation of low-frequency radio telescopes is seeking to observe the redshifted 21 cm signal from the epoch of reionization (EoR), requiring innovative methods of calibration and imaging to overcome the difficulties of wide-field low-frequency radio interferometry. Precise calibration will be required to separate the expected small EoR signal from the strong foreground emission at the frequencies of interest between 80 and 300 MHz. The Moon may be useful as a calibration source for detection of the EoR signature, as it should have a smooth and predictable thermal spectrum across the frequency band of interest. Initial observations of the Moon with the Murchison Widefield Array 32 tile prototype show that the Moon does exhibit a similar trend to that expected for a cool thermally emitting body in the observed frequency range, but that the spectrum is corrupted by reflected radio emission from Earth. In particular, there is an abrupt increase in the observed flux density of the Moon within the internationally recognized frequency modulated (FM) radio band. The observations have implications for future low-frequency surveys and EoR detection experiments that will need to take this reflected emission from the Moon into account. The results also allow us to estimate the equivalent isotropic power emitted by the Earth in the FM band and to determine how bright the Earth might appear at meter wavelengths to an observer beyond our own solar system.

A. R. Whitney | S. J. Tingay | T. Prabu | G. Bernardi | D. A. Mitchell | S. M. Ord | L. J. Greenhill | R. B. Wayth | M. Johnston-Hollitt | N. Udaya Shankar | A. E. E. Rogers | K. S. Srivani | J. C. Kasper | B. J. Hazelton | M. F. Morales | J. D. Bowman | F. Briggs | D. Emrich | J. N. Hewitt | J. D. Bunton | E. Morgan | A. Roshi | R. A. Remillard | J. Pathikulangara | B. M. Gaensler | R. J. Sault | R. L. Webster | B. McKinley | D. L. Kaplan | J. S. B. Wyithe | D. Kaplan | J. Hewitt | R. Webster | D. Barnes | S. Tingay | M. Morales | E. Morgan | A. D. Oliveira-Costa | D. Oberoi | A. Rogers | B. Corey | R. Cappallo | A. Whitney | R. Sault | D. Herne | R. Wayth | J. Kasper | G. Bernardi | J. Bowman | B. Hazelton | J. Wyithe | R. Goeke | R. Subrahmanyan | M. Johnston-Hollitt | F. Briggs | B. Gaensler | D. Mitchell | L. Greenhill | S. Ord | C. Lonsdale | S. McWhirter | A. Deshpande | M. Lynch | M. Waterson | A. Williams | J. Stevens | J. Bunton | W. Arcus | D. Emrich | J. Salah | N. Shankar | K. Srivani | R. Cappallo | R. Remillard | B. McKinley | E. Kratzenberg | A. Roshi | C. Williams | T. Prabu | A. Williams | L. deSouza | R. Koenig | J. Pathikulangara | N. Udaya Shankar | B. E. Corey | A. de Oliveira-Costa | R. Goeke | E. Kratzenberg | C. J. Lonsdale | M. J. Lynch | S. R. McWhirter | D. Oberoi | R. Subrahmanyan | M. Waterson | C. L. Williams | W. Arcus | D. Barnes | A. Deshpande | L. deSouza | D. Herne | B. B. Kincaid | R. Koenig | J. E. Salah | J. Stevens | R. C. Cappallo | D. Kaplan | A. de Oliveira-Costa | G. Bernardi | David G. Barnes | S. Tingay | Lincoln J. Greenhill | Rachel L. Webster | J. C. Kasper | E. Morgan | Alan E. E. Rogers | B. Gaensler | Jason Stevens | Ron Remillard | Avinash A. Deshpande | Frank H. Briggs | R. Subrahmanyan | Andrew R. Williams

[1]  F. Schwab,et al.  Relaxing the isoplanatism assumption in self-calibration; applications to low-frequency radio interferometry , 1984 .

[2]  G. Bernardi,et al.  HI Epoch of Reionization Arrays , 2012, 1201.1700.

[3]  G. Moore,et al.  Decoherence due to the horizon after inflation , 2007, 0708.3353.

[4]  C. Heiles,et al.  The polarization and intensity of thermal radiation from a planetary surface , 1963 .

[5]  Michael D. Papagiannis,et al.  The Search for Extraterrestrial Life: Recent Developments , 1985 .

[6]  W. A. Coles,et al.  Interferometric Imaging with the 32 Element Murchison Wide-Field Array , 2010, 1010.1733.

[7]  G. Swenson,et al.  Interferometry and Synthesis in Radio Astronomy , 1986 .

[8]  J. Evans Radar Studies of Planetary Surfaces , 1969 .

[9]  Christopher L. Williams,et al.  LOW-FREQUENCY IMAGING OF FIELDS AT HIGH GALACTIC LATITUDE WITH THE MURCHISON WIDEFIELD ARRAY 32 ELEMENT PROTOTYPE , 2012, 1203.5790.

[10]  S. J. Tingay,et al.  THE FIRST VERY LONG BASELINE INTERFEROMETRIC SETI EXPERIMENT , 2012, 1205.6466.

[11]  S. Zaroubi,et al.  Foregrounds for observations of the cosmological 21 cm line - I. First Westerbork measurements of Galactic emission at 150 MHz in a low latitude field , 2009, 0904.0404.

[12]  Alan E. E. Rogers,et al.  The Murchison Widefield Array: Design Overview , 2009, Proceedings of the IEEE.

[13]  J. Tarter Astrobiology and SETI , 2004 .

[14]  Abraham Loeb,et al.  21 cm cosmology in the 21st century , 2011, Reports on progress in physics. Physical Society.

[15]  W. Sullivan,et al.  Eavesdropping: the radio signature of the Earth. , 1978, Science.

[16]  E. K. Stodola,et al.  Detection of Radio Signals Reflected from the Moon , 1949, Proceedings of the IRE.

[17]  E. Greisen,et al.  The 74 MHz System on the Very Large Array , 2007, 0704.3088.

[18]  T. Hagfors,et al.  Determination of the Albedo of the Moon at a Wavelength of 6 in , 1969 .

[19]  Dbcde Australian Radiofrequency Spectrum Plan , 2005 .

[20]  David DeBoer,et al.  FIRST SPECTROSCOPIC IMAGING OBSERVATIONS OF THE SUN AT LOW RADIO FREQUENCIES WITH THE MURCHISON WIDEFIELD ARRAY PROTOTYPE , 2011, 1101.0620.

[21]  A. Rogers,et al.  SPECTRAL INDEX OF THE DIFFUSE RADIO BACKGROUND MEASURED FROM 100 TO 200 MHz , 2008, 0806.2868.

[22]  M. Morales,et al.  Reionization and Cosmology with 21-cm Fluctuations , 2009, 0910.3010.

[23]  Max Tegmark,et al.  A model of diffuse Galactic radio emission from 10 MHz to 100 GHz , 2008, 0802.1525.

[24]  Steven Furlanetto,et al.  Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe , 2006 .

[25]  A. Rogers,et al.  A lower limit of Δz > 0.06 for the duration of the reionization epoch , 2010, Nature.

[26]  A Katz,et al.  Targeting the Moon , 2011, IEEE Microwave Magazine.