Improving estimates of tropical peatland area, carbon storage, and greenhouse gas fluxes

Our limited knowledge of the size of the carbon pool and exchange fluxes in forested lowland tropical peatlands represents a major gap in our understanding of the global carbon cycle. Peat deposits in several regions (e.g. the Congo Basin, much of Amazonia) are only just beginning to be mapped and characterised. Here we consider the extent to which methodological improvements and improved coordination between researchers could help to fill this gap. We review the literature on measurement of the key parameters required to calculate carbon pools and fluxes, including peatland area, peat bulk density, carbon concentration, above-ground carbon stocks, litter inputs to the peat, gaseous carbon exchange, and waterborne carbon fluxes. We identify areas where further research and better coordination are particularly needed in order to reduce the uncertainties in estimates of tropical peatland carbon pools and fluxes, thereby facilitating better-informed management of these exceptionally carbon-rich ecosystems.

[1]  Benjamin L Turner,et al.  Contribution of subsurface peat to CO2 and CH4 fluxes in a neotropical peatland , 2011 .

[2]  C. Woodall,et al.  Imputing forest carbon stock estimates from inventory plots to a nationally continuous coverage , 2013, Carbon Balance and Management.

[3]  W. Salas,et al.  Benchmark map of forest carbon stocks in tropical regions across three continents , 2011, Proceedings of the National Academy of Sciences.

[4]  L. Aragão,et al.  Factors controlling spatio‐temporal variation in carbon dioxide efflux from surface litter, roots, and soil organic matter at four rain forest sites in the eastern Amazon , 2007 .

[5]  O. Phillips,et al.  FIELD MANUAL FOR PLOT ESTABLISHMENT AND REMEASUREMENT (RAINFOR) , 2005 .

[6]  R. Bustin,et al.  Late Pleistocene and Holocene development of the interior peat-accumulating basin of tropical Tasek Bera, Peninsular Malaysia , 2004 .

[7]  J. Couwenberg,et al.  Towards robust subsidence-based soil carbon emission factors for peat soils in south-east Asia, with special reference to oil palm plantations. , 2013 .

[8]  M. Allen,et al.  Advancing the use of minirhizotrons in wetlands , 2011, Plant and Soil.

[9]  F. E. Egler Ecosystems of the World , 1960 .

[10]  K. Minkkinen,et al.  Factors causing temporal and spatial variation in heterotrophic and rhizospheric components of soil respiration in afforested organic soil croplands in Finland , 2008 .

[11]  L. Verchot,et al.  Opportunities for reducing greenhouse gas emissions in tropical peatlands , 2010, Proceedings of the National Academy of Sciences.

[12]  Sandra Englhart,et al.  Quantifying Dynamics in Tropical Peat Swamp Forest Biomass with Multi-Temporal LiDAR Datasets , 2013, Remote. Sens..

[13]  O. Phillips,et al.  The 2010 Amazon Drought , 2011, Science.

[14]  Manual for coarse woody debris measurement in RAINFOR plots , 2011 .

[15]  Juilson Jubanski,et al.  ICESat/GLAS Data as a Measurement Tool for Peatland Topography and Peat Swamp Forest Biomass in Kalimantan, Indonesia , 2011, Remote. Sens..

[16]  F. Day,et al.  Evaluation of Two Methods for Estimating Belowground Production in a Freshwater Swamp Forest , 1988 .

[17]  G. Kiely,et al.  How strong is the current carbon sequestration of an Atlantic blanket bog? , 2011 .

[18]  B. C. Hansen,et al.  Carbon and sediment accumulation in the Everglades (USA) during the past 4000 years: rates, drivers, and sources of error , 2012 .

[19]  J. Canadell,et al.  Peatlands and the carbon cycle: from local processes to global implications - a synthesis , 2008 .

[20]  Hans Joosten,et al.  Greenhouse gas fluxes from tropical peatlands in south‐east Asia , 2009 .

[21]  M. Waldram Characterising disturbance in tropical peat swamp forest using satellite imaging radar , 2014 .

[22]  Christopher J. Banks,et al.  Global and regional importance of the tropical peatland carbon pool , 2011 .

[23]  Christopher W. Woodall,et al.  Sampling Protocol, Estimation, and Analysis Procedures for the Down Woody Materials Indicator of the FIA Program , 2015 .

[24]  David P. Roy,et al.  Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices , 2010 .

[25]  B. Moss,et al.  Mires : swamp, bog, fen, and moor , 1984 .

[26]  D. W. Nelson,et al.  Total Carbon, Organic Carbon, and Organic Matter , 1983, SSSA Book Series.

[27]  C. Barbosa,et al.  Dual-season mapping of wetland inundation and vegetation for the central Amazon basin , 2003 .

[28]  I. Prentice,et al.  Blanket peat biome endangered by climate change , 2013 .

[29]  J. Staub,et al.  A mechanism to explain the preservation of leaf litter lenses in coals derived from raised mires , 1999 .

[30]  F. Siegert,et al.  Land cover change 2002–2005 in Borneo and the role of fire derived from MODIS imagery , 2007 .

[31]  Benjamin L Turner,et al.  Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland , 2011 .

[32]  P. Glaser,et al.  Piston corers for peat and lake sediments , 1984 .

[33]  Zicheng Yu,et al.  Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics. , 2011 .

[34]  Takashi Hirano,et al.  Effect of groundwater level on soil respiration in tropical peat swamp forests , 2012 .

[35]  Christopher Neill,et al.  Comparison of Soil Coring and Ingrowth Methods for Measuring Belowground Production , 1992 .

[36]  J. Rieley,et al.  Wise use of mires and peatlands , 2002 .

[37]  C. Birkett,et al.  Evaluation of JERS-1 SAR mosaics for hydrological applications in the Congo river basin , 2002 .

[38]  S. Frolking,et al.  High‐frequency measurements of methane ebullition over a growing season at a temperate peatland site , 2011 .

[39]  Catherine M. Yule,et al.  Leaf litter decomposition in a tropical peat swamp forest in Peninsular Malaysia , 2009, Wetlands Ecology and Management.

[40]  Florian Siegert,et al.  Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands , 2009, Proceedings of the National Academy of Sciences.

[41]  H. Muller‐Landau,et al.  Cross-Section Mass: An Improved Basis for Woody Debris Necromass Inventory , 2011 .

[42]  Florian Siegert,et al.  Monitoring Fire and Selective Logging Activities in Tropical Peat Swamp Forests , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[43]  Chris Roosendaal,et al.  A New Method for Determining the Bulk Density of Uncompacted Peat from Field Settings , 2009 .

[44]  A. Rosenqvist,et al.  New perspectives on global ecosystems from wide-area radar mosaics: Flooded forest mapping in the tropics , 2000 .

[45]  R. Bustin,et al.  New classification systems for tropical organic-rich deposits based on studies of the Tasek Bera Basin, Malaysia , 2003 .

[46]  Chris D. Evans,et al.  Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes , 2013, Nature.

[47]  K. Krauss,et al.  A Tropical Freshwater Wetland: I. Structure, Growth, and Regeneration , 2005, Wetlands Ecology and Management.

[48]  J. Chambers,et al.  Tree allometry and improved estimation of carbon stocks and balance in tropical forests , 2005, Oecologia.

[49]  Susan G. Letcher,et al.  Rapid Recovery of Biomass, Species Richness, and Species Composition in a Forest Chronosequence in Northeastern Costa Rica , 2009 .

[51]  L. Aragão,et al.  The effects of water availability on root growth and morphology in an Amazon rainforest , 2008, Plant and Soil.

[52]  Soo Chin Liew,et al.  Degradation and development of peatlands in Peninsular Malaysia and in the islands of Sumatra and Borneo since 1990 , 2010 .

[53]  Dirk H. Hoekman,et al.  ALOS PALSAR radar observation of tropical peat swamp forest as a monitoring tool for environmental protection and restoration , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[54]  N. Higuchi,et al.  Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon , 2000, Oecologia.

[55]  J. Klopatek,et al.  Mires: Swamp, Bog, Fen and Moor , 1983 .

[56]  Edward T. A. Mitchard,et al.  The distribution and amount of carbon in the largest peatland complex in Amazonia , 2014 .

[57]  P. Keddy,et al.  The World's Largest Wetlands: Ecology and Conservation , 2009 .

[58]  Sassan Saatchi,et al.  Mapping tropical forest biomass with radar and spaceborne LiDAR: overcoming problems of high biomass and persistent cloud , 2011 .

[59]  Jukka Turunen,et al.  Carbon accumulation in peatland , 1998 .

[60]  Tropical Peat Accumulation in Central Amazonia , 2013, Wetlands.

[61]  Karen L. Waddell,et al.  Sampling coarse woody debris for multiple attributes in extensive resource inventories , 2002 .

[62]  K. Ruokolainen,et al.  Amazonian floodplains harbour minerotrophic and ombrotrophic peatlands , 2009 .

[63]  Benjamin L Turner,et al.  Environmental controls of temporal and spatial variability in CO2 and CH4 fluxes in a neotropical peatland , 2013, Global change biology.

[64]  B. D. Wheeler,et al.  Ecological gradients, subdivisions and terminology of north‐west European mires , 2000 .

[65]  Benjamin L Turner,et al.  Arbuscular mycorrhizal mycelial respiration in a moist tropical forest. , 2010, The New phytologist.

[66]  André F. Lotter,et al.  Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results , 2001 .

[67]  G. Lee An analysis of human impact on humid, tropical forests in Jambi, Indonesia using satellite images , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[68]  D. Sparks,et al.  Methods of soil analysis. Part 3 - chemical methods. , 1996 .

[69]  K. Kojima,et al.  Subsidence and soil CO2 efflux in tropical peatland in southern Thailand under various water table and management conditions. , 2013 .

[70]  S. Sjögersten,et al.  Impact of Simulated Changes in Water Table Depth on Ex Situ Decomposition of Leaf Litter from a Neotropical Peatland , 2013, Wetlands.

[71]  Susan Page,et al.  High diversity of tropical peatland ecosystem types in the Pastaza‐Marañón basin, Peruvian Amazonia , 2011 .

[72]  S. Limin,et al.  Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration. , 2008, Ecology.

[73]  Florian Siegert,et al.  Above ground biomass estimation across forest types at different degradation levels in Central Kalimantan using LiDAR data , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[74]  Zicheng Yu Northern peatland carbon stocks and dynamics: a review , 2012 .

[75]  C. Perry,et al.  Developing and Evaluating Rapid Field Methods to Estimate Peat Carbon , 2014, Wetlands.

[76]  Tomoyasu Ishida,et al.  Influences of Deforestation on Carbon Balance in a Natural Tropical Peat Swamp Forest in Thailand , 1999 .

[77]  Anu Kettunen,et al.  Carbon in Boreal Peatlands , 2006 .

[78]  D. Alsdorf,et al.  Characterization of complex fluvial systems using remote sensing of spatial and temporal water level variations in the Amazon, Congo, and Brahmaputra Rivers , 2010 .

[79]  J. Couwenberg,et al.  Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability , 2011 .

[80]  T. Miyajima,et al.  Biogeochemical properties of a tropical swamp forest ecosystem in southern Thailand , 2002, Limnology.

[81]  S. Limin,et al.  A cost-efficient method to assess carbon stocks in tropical peat soil , 2012 .

[82]  Roberta E. Martin,et al.  High-fidelity national carbon mapping for resource management and REDD+ , 2013, Carbon Balance and Management.

[83]  Henri Roggeri,et al.  Tropical Freshwater Wetlands , 1995, Developments in Hydrobiology.

[84]  S. Page,et al.  The amount of carbon released from peat and forest fires in Indonesia during 1997 , 2002, Nature.

[85]  Hui Li,et al.  A framework for creating and validating a non-linear spectrum-biomass model to estimate the secondary succession biomass in moist tropical forests , 2010 .

[86]  Nicolas Baghdadi,et al.  Mapping of Central Africa Forested Wetlands Using Remote Sensing , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[87]  J. Holden,et al.  Evaluating approaches for estimating peat depth , 2014 .

[88]  Florian Siegert,et al.  Determination of the amount of carbon stored in Indonesian peatlands. , 2008 .

[89]  C. Gehring,et al.  Allometry of the babassu palm growing on a slash-and-burn agroecosystem of the eastern periphery of Amazonia , 2011 .

[90]  F. Siegert,et al.  Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions , 2010 .

[91]  Oliver L. Phillips,et al.  Amazon palm biomass and allometry , 2013 .

[92]  Pete Smith,et al.  Comparison of methods for quantifying soil carbon in tropical peats , 2014 .

[93]  S. Page,et al.  The large Amazonian peatland carbon sink in the subsiding Pastaza‐Marañón foreland basin, Peru , 2012 .

[94]  Hari Eswaran,et al.  Organic Carbon in Soils of the World , 1993 .

[95]  O. Phillips,et al.  Field Manual for plot establishment and remeasurement , 2002 .

[96]  A. Di Fiore,et al.  Increasing biomass in Amazonian forest plots. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[97]  H. Laudon,et al.  Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire – a significant sink after accounting for all C‐fluxes , 2008 .

[98]  Li Zhang,et al.  Tropical wetlands: seasonal hydrologic pulsing, carbon sequestration, and methane emissions , 2010, Wetlands Ecology and Management.

[99]  Jukka Turunen,et al.  Estimating carbon accumulation rates of undrained mires in Finland–application to boreal and subarctic regions , 2002 .

[100]  Melanie L. J. Stiassny,et al.  The Congo River Basin , 2016 .

[101]  Benjamin L Turner,et al.  Tropical wetlands: A missing link in the global carbon cycle? , 2014, Global biogeochemical cycles.

[102]  J. Price Role and character of seasonal peat soil deformation on the hydrology of undisturbed and cutover peatlands , 2003 .

[103]  Juilson Jubanski,et al.  Detection of large above-ground biomass variability in lowland forest ecosystems by airborne LiDAR , 2012 .

[104]  R. Bustin,et al.  Characterization and quantification of inorganic constituents of tropical peats and organic-rich deposits from Tasek Bera (Peninsular Malaysia): implications for coals , 2002 .

[105]  D. A. King,et al.  Height-diameter allometry of tropical forest trees , 2010 .

[106]  Andrew P. Robinson,et al.  Randomization, Bootstrap and Monte Carlo Methods in Biology , 2007 .

[107]  J. Anderson The tropical peat swamps of western Malesia , 1983 .

[108]  S. Goetz,et al.  Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps , 2012 .

[109]  A. Klute,et al.  Methods of soil analysis , 2015, American Potato Journal.

[110]  E. Hornibrook,et al.  Trees are major conduits for methane egress from tropical forested wetlands. , 2013, The New phytologist.

[111]  G. Le Roux,et al.  Suggested protocol for collecting, handling and preparing peat cores and peat samples for physical, chemical, mineralogical and isotopic analyses. , 2004, Journal of environmental monitoring : JEM.

[112]  O. Phillips,et al.  An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR) , 2002 .

[113]  R. Bustin,et al.  Vegetation zones and diagnostic pollen profiles of a coastal peat swamp, Bocas del Toro, Panamá , 1997 .

[114]  E. Gorham Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming. , 1991, Ecological applications : a publication of the Ecological Society of America.

[115]  C. K. Shum,et al.  Characterization of terrestrial water dynamics in the Congo Basin using GRACE and satellite radar altimetry , 2011 .

[116]  J. Couwenberg,et al.  Carbon storage and release in Indonesian peatlands since the last deglaciation , 2014 .

[117]  Aki Pitkänen,et al.  Comparison of different types of peat corers in volumetric sampling. , 2011 .

[118]  Xixi Lu,et al.  Subsidence and carbon loss in drained tropical peatlands , 2012 .

[119]  Susan Page,et al.  A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics , 2004 .

[120]  Kah Joo Goh,et al.  Methane fluxes from three ecosystems in tropical peatland of Sarawak, Malaysia , 2005 .

[121]  Eric A. Davidson,et al.  The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest , 2002 .

[122]  H. E. Wright Coring tips , 1991 .

[123]  Jorge Hoyos Santillán Controls of carbon turnover in tropical peatlands , 2014 .

[124]  The Geochemistry of Amazonian Peats , 2014, Wetlands.

[125]  Takashi Hirano,et al.  Effects of disturbances on the carbon balance of tropical peat swamp forests , 2012 .

[126]  Kah Joo Goh,et al.  Soil CO 2 flux from three ecosystems in tropical peatland of Sarawak , Malaysia , 2005 .

[127]  S. Page,et al.  Fluvial organic carbon losses from a Bornean blackwater river Journal Item , 2018 .

[128]  L. Finér,et al.  Root dynamics at drained peatland sites of different fertility in southern Finland , 1998, Plant and Soil.

[129]  K. Ruokolainen,et al.  Amazonian peatlands: an ignored C sink and potential source , 2009 .

[130]  Takashi Hirano,et al.  Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland , 2014, Global change biology.

[131]  Jyrki Jauhiainen,et al.  Carbon Dioxide emissions from an Acacia plantation on peatland in Sumatra, Indonesia , 2011 .

[132]  R. Qualls,et al.  The influence of humic substances on the aerobic decomposition of submerged leaf litter , 1990, Hydrobiologia.

[133]  Sean Sloan,et al.  Overcoming Limitations with Landsat Imagery for Mapping of Peat Swamp Forests in Sundaland , 2012, Remote. Sens..

[134]  M. Tobler,et al.  Peatlands of the Madre de Dios River of Peru: Distribution, Geomorphology, and Habitat Diversity , 2012, Wetlands.

[135]  George M. Woodwell,et al.  The role of terrestrial vegetation in the global carbon cycle : measurement by remote sensing , 1985 .

[136]  M. Billett,et al.  Linking land‐atmosphere‐stream carbon fluxes in a lowland peatland system , 2004 .

[137]  R. Naylor,et al.  A Tropical Freshwater Wetland: III. Direct Use Values and Other Goods and Services , 2005, Wetlands Ecology and Management.

[138]  Tetsuya Shimamura,et al.  Organic matter dynamics control plant species coexistence in a tropical peat swamp forest , 2005, Proceedings of the Royal Society B: Biological Sciences.

[139]  H. Joosten,et al.  Peatlands : guidance for climate change mitigation by conservation, rehabilitation and sustainable use , 2012 .

[140]  C. Malins,et al.  OF PEAT SURFACE GREENHOUSE GAS EMISSIONS FROM OIL PALM PLANTATIONS IN SOUTHEAST ASIA , 2011 .

[141]  T. Baker,et al.  Vegetation development in an Amazonian peatland , 2013 .

[142]  W Shotyk,et al.  Interdependence of peat and vegetation in a tropical peat swamp forest. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[143]  M. Lefsky,et al.  Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park, Gabon: Overcoming problems of high biomass and persistent cloud , 2012 .

[144]  H. Cubizolle,et al.  Mires and Histosols in French Guiana (South America): new data relating to location and area , 2013 .

[145]  Hidenori Takahashi,et al.  Carbon fluxes from a tropical peat swamp forest floor , 2005 .

[146]  M. Kaneko,et al.  The carbon content characteristics of tropical peats in Central Kalimantan, Indonesia: Estimating their spatial variability in density , 2001 .

[147]  Y. Sheng,et al.  A high‐resolution GIS‐based inventory of the west Siberian peat carbon pool , 2004 .

[148]  T. Rixen,et al.  Relevance of peat draining rivers in central Sumatra for the riverine input of dissolved organic carbon into the ocean , 2007 .

[149]  P. Richard,et al.  Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland , 2007 .

[150]  K. Ewel,et al.  A Tropical Freshwater Wetland: II. Production, Decomposition, and Peat Formation , 2005, Wetlands Ecology and Management.

[151]  M. A. Brady Organic matter dynamics of coastal peat deposits in Sumatra, Indonesia , 1997 .

[152]  Satoshi Tsuyuki,et al.  Detection of burned peat swamp forest in a heterogeneous tropical landscape: A case study of the Klias Peninsula, Sabah, Malaysia , 2007 .

[153]  T. Baker,et al.  The high hydraulic conductivity of three wooded tropical peat swamps in northeast Peru: measurements and implications for hydrological function , 2013 .

[154]  L. Slater,et al.  Investigating peatland stratigraphy and hydrogeology using integrated electrical geophysics , 2002 .

[155]  J. Jauhiainen,et al.  Controls on the Carbon Balance of Tropical Peatlands , 2009, Ecosystems.

[156]  D. Alsdorf Water Storage of the Central Amazon Floodplain Measured with GIS and Remote Sensing Imagery , 2003 .

[157]  Y. Sulistiyanto Nutrient dynamics in different sub-types of peat swamp forest in central Kalimantan, Indonesia , 2005 .

[158]  Melanie L. J. Stiassny,et al.  The Congo River Basin , 2016 .

[159]  Soo Chin Liew,et al.  Extent of industrial plantations on Southeast Asian peatlands in 2010 with analysis of historical expansion and future projections , 2012 .

[160]  Dirk H. Hoekman,et al.  Satellite radar observation of tropical peat swamp forest as a tool for hydrological modelling and environmental protection , 2007 .