Turbulence in the Solar Wind

The solar wind is, apparently, a turbulent medium permeated by fluctuations on a broad range of scales characterizing the plasma as a fluid and kinetic entity. Here we briefly review some recent developments and observations on MHD fluctuations in the frequency range between some 10−6 and 10−2 Hz. Spectral analysis reveals that solar wind fluctuations represent ongoing turbulence, often with high Alfvenic correlations of coronal origin, which undergoes considerable spatial and spectral evolution in the radially expanding wind and is coupled to large-scale plasma structures and magnetic field inhomogeneities. Theoretical attempts to model the transport of magnetohydrodynamic fluctuations are discussed. Finally, the dissipation of turbulence and concurrent heating of the wind are addressed.

[1]  U. Frisch,et al.  Strong MHD helical turbulence and the nonlinear dynamo effect , 1976, Journal of Fluid Mechanics.

[2]  Robert H. Kraichnan,et al.  Inertial‐Range Spectrum of Hydromagnetic Turbulence , 1965 .

[3]  J. V. Hollweg On WKB expansions for Alfven waves in the solar wind , 1990 .

[4]  W. Matthaeus,et al.  Extended inertial range phenomenology of magnetohydrodynamic turbulence , 1989 .

[5]  E. Marsch,et al.  Evidence for a “background” spectrum of solar wind turbulence in the inner heliosphere , 1990 .

[6]  J. Slavin,et al.  Spatial gradients in the heliospheric magnetic field - Pioneer 11 observations between 1 AU and 24 AU, and over solar cycle 21 , 1990 .

[7]  Pierluigi Veltri,et al.  Fully developed anisotropic hydromagnetic turbulence in interplanetary space , 1980 .

[8]  T. Holzer,et al.  Alfvén waves in stellar winds , 1983 .

[9]  D. A. Roberts,et al.  Origin and evolution of fluctuations in the solar wind: Helios observations and Helios-Voyager comparisons , 1987 .

[10]  T. Holzer,et al.  Acceleration of the solar wind , 1982 .

[11]  L. Davis,et al.  Large-Amplitude Alfvn Waves in the Interplanetary Medium' , 1971 .

[12]  H. Rosenbauer,et al.  Solar wind protons: Three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU , 1982 .

[13]  E. Marsch,et al.  On the radial evolution of MHD turbulence in the inner heliosphere , 1990 .

[14]  C. Tu A solar wind model with the power spectrum of Alfvénic fluctuations , 1987 .

[15]  E. Marsch,et al.  Ideal MHD equations in terms of compressive Elsässer variables , 1987 .

[16]  R. Grappin,et al.  ON THE ORIGIN OF SOLAR WIND TURBULENCE: HELIOS DATA REVISITED , 1989 .

[17]  W. Matthaeus,et al.  Remarks on transport theories of interplanetary fluctuations , 1990 .

[18]  S. Schwartz,et al.  The radial evolution of a single solar wind plasma parcel , 1983 .

[19]  Walter M. Elsasser,et al.  The Hydromagnetic Equations , 1950 .

[20]  William H. Matthaeus,et al.  Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind , 1982 .

[21]  W. Matthaeus,et al.  An interplanetary magnetic field ensemble at 1 AU , 1986 .

[22]  E. Marsch,et al.  Dynamics of correlation functions with Elsässer variables for inhomogeneous MHD turbulence , 1989, Journal of Plasma Physics.

[23]  M. Goldstein,et al.  Spectral evolution and cascade constant of solar wind Alfvénic turbulence , 1989 .

[24]  W. Matthaeus,et al.  Models of inertial range spectra of interplanetary magnetohydrodynamic turbulence , 1990 .

[25]  F. Mariani,et al.  Radial evolution of power spectra of interplanetary Alfvénic turbulence , 1981 .

[26]  P. Coleman Turbulence, viscosity, and dissipation in the solar-wind plasma , 1968 .

[27]  Z. Pu,et al.  The power spectrum of interplanetary Alfvénic fluctuations: Derivation of the governing equation and its solution , 1984 .

[28]  M. Velli,et al.  Turbulent cascade of incompressible unidirectional Alfvén waves in the interplanetary medium. , 1989, Physical review letters.

[29]  L. Woltjer,et al.  A THEOREM ON FORCE-FREE MAGNETIC FIELDS. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[30]  N. Sheeley,et al.  Solar wind speed and coronal flux-tube expansion , 1990 .

[31]  W. Matthaeus,et al.  Stationarity of magnetohydrodynamic fluctuations in the solar wind , 1982 .

[32]  E. Marsch,et al.  On the origin of solar wind MHD turbulence: Helios data revisited , 1990 .

[33]  M. Velli,et al.  Solar wind expansion effects on the evolution of hydromagnetic turbulence in the interplanetary medium , 1990 .

[34]  R. Schwenn Large-scale structure of the interplanetary medium , 1990 .

[35]  A. Barnes Hydromagnetic waves, turbulence, and collisionless processes in the interplanetary medium , 1983 .

[36]  W. Matthaeus,et al.  Non-WKB evolution of solar wind fluctuations - A turbulence modeling approach , 1989 .

[37]  M. Vellante,et al.  The radial evolution of the IMF fluctuations: A comparison with theoretical models , 1982 .

[38]  H. Rosenbauer,et al.  The dependence of MHD turbulence spectra on the inner solar wind stream structure near solar minimum , 1990 .

[39]  C. Tu The damping of interplanetary Alfvénic fluctuations and the heating of the solar wind , 1988 .