Perception et contrôle de la distance intervéhiculaire en condition de brouillard : Etude sur simulateur

Les statistiques mettent en evidence une augmentation importante du risque et de la gravite des accidents par temps de brouillard. Par ailleurs, les etudes de trafic menees sur autoroute montrent generalement une reduction des intervalles par temps de brouillard et indiquent que cette reduction ne peut pas etre expliquee uniquement par la necessite de garder le contact visuel avec le vehicule lievre. Partant de ce constat, nous avons cherche a mieux comprendre les causes de la diminution des intervalles par temps de brouillard. Nous avons teste trois hypotheses selon lesquelles le brouillard affecte les mecanismes perceptifs et perceptivo-moteurs impliques dans la regulation de l'intervalle et dans le controle de la trajectoire. La premiere hypothese est celle d'une surestimation de la distance intervehiculaire en condition de brouillard. Les travaux anterieurs ayant montre une surestimation importante de la distance intervehiculaire en condition de brouillard tres dense, nous avons cherche a preciser les conditions d'apparition de ce phenomene a travers deux experimentations de jugement perceptif. Nos resultats montrent que la surestimation se limite aux conditions de brouillard extremement dense ou tres peu d'indices de distance sont disponibles. La reduction des intervalles par temps de brouillard ne peut donc pas etre expliquee par une surestimation de la distance intervehiculaire. La seconde hypothese etudiee concerne la sensibilite au mouvement relatif (i.e., l'eloignement ou le rapprochement du vehicule lievre). Nous supposons (i) qu'en reduisant le contraste du vehicule lievre ou en masquant sa silhouette, le brouillard rend la perception du mouvement relatif plus difficile et (ii) que les conducteurs reduisent leur intervalle de facon a maintenir le seuil de perception du mouvement relatif au meme niveau qu'en condition de visibilite normale. Au cours de deux experimentations, nous avons mesure le seuil de perception du mouvement relatif sous la forme d'un temps de reponse. Les resultats confirment le volet perceptif de notre hypothese et montrent plus particulierement que la sensibilite au mouvement relatif est largement degradee lorsque les informations fournies par la silhouette du vehicule lievre ne sont pas disponibles. Afin de tester le second volet de notre hypothese portant sur les mecanismes du controle de l'intervalle, nous avons mene une experience de suivi de vehicule ou la tâche de controle de l'intervalle etait rendue difficile par les variations de vitesse du vehicule lievre. Les participants ont adopte differentes strategies, dont l'une visant a se rapprocher du vehicule lievre de facon a voir correctement sa silhouette et a augmenter ainsi la sensibilite au mouvement relatif, ce qui confirme le second volet de notre hypothese. Pour finir, nous avons cherche a savoir si les exigences liees a la tâche de controle de la trajectoire sont en cause dans l'adoption d'intervalles courts par temps de brouillard. La litterature laisse en effet supposer que le suivi d'un vehicule lievre de pres facilite le controle de trajectoire en condition de brouillard, tout en evitant les erreurs de positionnement lateral. L'experience de suivi de vehicule que nous avons menee, ou les exigences du controle de directionnel etaient importantes, n'a pas confirme cette hypothese. Il n'est en effet apparu aucun benefice perceptivo-moteur a suivre le vehicule lievre de pres en condition de brouillard. Nous constatons neanmoins que le vehicule lievre est utilise comme guide en condition de brouillard. L'ensemble des resultats suggere que l'adaptation des conducteurs face a la reduction de la sensibilite au mouvement relatif due au brouillard contribue a la diminution des intervalles par temps de brouillard. Nous proposons des perspectives d'applications basees sur cette interpretation.

[1]  Hans Godthelp,et al.  Speed Choice and Steering Behavior in Curve Driving , 1996, Hum. Factors.

[2]  Jack M. Loomis,et al.  Limited Field of View of Head-Mounted Displays Is Not the Cause of Distance Underestimation in Virtual Environments , 2004, Presence: Teleoperators & Virtual Environments.

[3]  Maurice Aron,et al.  INTERDISTANCES, TRAFIC ET SECURITE DE LA ROUTE , 1996 .

[4]  S. Nishida,et al.  Contrast Sensitivity of the Motion System , 1996, Vision Research.

[5]  H Summala,et al.  Cognitive load and detection thresholds in car following situations: safety implications for using mobile (cellular) telephones while driving. , 1999, Accident; analysis and prevention.

[6]  Paul Milgram,et al.  The Development of a Time-Related Measure to Describe Driving Strategy , 1984 .

[7]  E. Bourrel,et al.  MIXING MICRO AND MACRO REPRESENTATIONS OF TRAFFIC FLOW : A FIRST THEORETICAL STEP , 2003 .

[8]  David Shinar,et al.  The tendency of drivers to pass other vehicles , 2005 .

[9]  Paulo Noriega,et al.  VEHICLE'S MOTION DETECTION: INFLUENCE OF ROAD LAYOUT AND RELATION WITH VISUAL DRIVER'S ASSESSMENT , 1999 .

[10]  J M Loomis,et al.  Visual Control of Steering without Course Information , 1996, Perception.

[11]  A. Kemeny,et al.  Evaluating perception in driving simulation experiments , 2003, Trends in Cognitive Sciences.

[12]  D. Regan,et al.  Cyclopean Discrimination Thresholds for the Direction and Speed of Motion in Depth , 1996, Vision Research.

[13]  Leonard Evans,et al.  The Influence of Forward Vision and Target Size on Apparent Inter-Vehicular Spacing , 1976 .

[14]  R. Snowden,et al.  The Effect of Contrast upon Perceived Speed: A General Phenomenon? , 1999, Perception.

[15]  George J. Andersen,et al.  Effects of Reduced Visibility from Fog on Car-Following Performance , 2008 .

[16]  R W Proctor,et al.  Mixing location-relevant and location-irrelevant choice-reaction tasks: influences of location mapping on the Simon effect. , 2000, Journal of experimental psychology. Human perception and performance.

[17]  Katja Vogel,et al.  A comparison of headway and time to collision as safety indicators. , 2003, Accident; analysis and prevention.

[18]  Leslie Pack Kaelbling,et al.  A Dynamical Model of Visually-Guided Steering, Obstacle Avoidance, and Route Selection , 2003, International Journal of Computer Vision.

[19]  Michael Land,et al.  Which parts of the road guide steering? , 1995, Nature.

[20]  Wendy Macdonald,et al.  Review of Relationships Between Steering Wheel Reversal Rate and Driving Task Demand , 1980 .

[21]  Johan Engström,et al.  Effects of visual and cognitive load in real and simulated motorway driving , 2005 .

[22]  R. Hawkins Motorway Traffic Behaviour in Reduced Visibility Conditions , 1988 .

[23]  Heinrich H. Bülthoff,et al.  THE EFFECT OF FIELD OF VIEW AND SURFACE TEXTURE ON DRIVER STEERING PERFORMANCE , 1999 .

[24]  Zijiang J. He,et al.  Judging Egocentric Distance on the Ground: Occlusion and Surface Integration , 2004, Perception.

[25]  E. Boer Car following from the driver’s perspective , 1999 .

[26]  D. Ja,et al.  Scales for perceived egocentric distance in a large open field: comparison of three psychophysical methods. , 1985 .

[27]  Robert D. McIntosh,et al.  The use of visual feedback is independent of visual awareness: evidence from visual extinction , 2005, Experimental Brain Research.

[28]  Astros Chatziastros,et al.  Why fog increases the perceived speed , 2008 .

[29]  C Berthelon,et al.  Curvilinear Approach to an Intersection and Visual Detection of a Collision , 1993, Human factors.

[30]  D. Regan,et al.  Cyclopean motion perception produced by Oscillations of size, disparity and location , 1996, Vision Research.

[31]  H Summala,et al.  Driving experience and perception of the lead car's braking when looking at in-car targets. , 1998, Accident; analysis and prevention.

[32]  B Rogers,et al.  Motion Parallax as an Independent Cue for Depth Perception , 1979, Perception.

[33]  R Pasnak,et al.  The Effect of Familiar Size at Familiar Distances , 1982, Perception.

[34]  Erwin R. Boer A statistical model of looming detection , 1999 .

[35]  Ota Hiro DISTANCE PERCEPTION IN DRIVING , 1996 .

[36]  M Colomb,et al.  Simulation de la conduite automobile : etude de problemes perceptifs de la conduite dans le brouillard , 1999 .

[37]  Nicholas J. Ward,et al.  Driver-Model-Based Assessment of Behavioral Adaptation , 2006 .

[38]  Melvyn A. Goodale,et al.  The dissociation between perception and action in the Ebbinghaus illusion Nonillusory effects of pictorial cues on grasp , 2001, Current Biology.

[39]  P. Cavanagh,et al.  Position displacement, not velocity, is the cue to motion detection of second-order stimuli , 1998, Vision Research.

[40]  Francis P. D. Navin,et al.  Automobiles on Horizontal Curves: Experiments and Observations , 1998 .

[41]  Eric Dumont,et al.  Extended Photometric Model of Fog Effects on Road Vision , 2002 .

[42]  Jeroen Hogema,et al.  DRIVING BEHAVIOUR IN FOG: ANALYSIS OF INDUCTIVE LOOP DATA , 1994 .

[43]  S Krafczyk,et al.  Interaction between perceived self-motion and object-motion impairs vehicle guidance. , 1984, Science.

[44]  J. Wann,et al.  Steering with or without the flow: is the retrieval of heading necessary? , 2000, Trends in Cognitive Sciences.

[45]  George J. Andersen,et al.  Optical Information for Car Following: The Driving by Visual Angle (DVA) Model , 2007, Hum. Factors.

[46]  Robert Herman,et al.  Traffic Dynamics: Analysis of Stability in Car Following , 1959 .

[47]  Leonard Evans,et al.  Perceptual Thresholds in Car-Following---A Comparison of Recent Measurements with Earlier Results , 1977 .

[48]  J. Miller,et al.  Motor processes in simple, go/no-go, and choice reaction time tasks: a psychophysiological analysis. , 2001, Journal of experimental psychology. Human perception and performance.

[49]  Giselle Paulmier Fog Luminance Evaluation in Daytime , 2002 .

[50]  E R Hoffmann,et al.  Scaling of relative velocity between vehicles. , 1996, Accident; analysis and prevention.

[51]  Viola Cavallo,et al.  Distance Perception of Vehicle Rear Lights in Fog , 2001, Hum. Factors.

[52]  D. Regan,et al.  Looming detectors in the human visual pathway , 1978, Vision Research.

[53]  Walter C. Gogel,et al.  Absolute motion parallax and the specific distance tendency , 1973 .

[54]  J T Mordkoff,et al.  Temporal stimulus-response compatibility. , 2001, Journal of experimental psychology. Human perception and performance.

[55]  Cong Yu,et al.  Perceptual learning in contrast discrimination and the (minimal) role of context. , 2004, Journal of vision.

[56]  Misha Tsodyks,et al.  Perceptual learning in contrast discrimination: the effect of contrast uncertainty. , 2004, Journal of vision.

[57]  L. Kaufman,et al.  Handbook of perception and human performance , 1986 .

[58]  A. Yuille,et al.  Object perception as Bayesian inference. , 2004, Annual review of psychology.

[59]  Andras Kemeny,et al.  SIMULATION STUDY OF DRIVER STRESS AND PERFORMANCE TO AN UNEXPECTED STEERING CRITICAL EVENT , 2008 .

[60]  L. O. Harvey,et al.  Detectability of relative motion as a function of exposure duration, angular separation, and background , 1974 .

[61]  David N. Lee,et al.  Where we look when we steer , 1994, Nature.

[62]  Wendy J Adams,et al.  Bayesian modeling of cue interaction: bistability in stereoscopic slant perception. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[63]  Jack M. Loomis,et al.  Visual perception of egocentric distance in real and virtual environments. , 2003 .

[64]  M. Teghtsoonian,et al.  Scaling apparent distance in natural indoor settings , 1969 .

[65]  Peter A. Hancock Is car following the real question – are equations the answer? , 1999 .

[66]  Jeroen Hogema,et al.  DRIVING BEHAVIOUR IN FOG: A SIMULATOR STUDY , 1994 .

[67]  Corinne Roumes,et al.  Distance Estimation in a 3-D Imaging Display , 2001 .

[68]  Tomohiro Yamamura,et al.  Study on Driver's Car Following Abilities Based on an Active Haptic Support Function , 2006 .

[69]  A. Delorme,et al.  Psychologie de la perception , 2019 .

[70]  E. Montroll,et al.  Traffic Dynamics: Studies in Car Following , 1958 .

[71]  Mike McDonald,et al.  Car-following: a historical review , 1999 .

[72]  B. Hills Vision, Visibility, and Perception in Driving , 1980, Perception.

[73]  D. Burr,et al.  Dependency of reaction times to motion onset on luminance and chromatic contrast , 2001, Vision Research.

[74]  Pascal Mamassian,et al.  Bayesian combination of ambiguous shape cues. , 2004, Journal of vision.

[75]  A J Harris Following distances, braking capacity, and the probability of danger of collision between vehicles , 1964 .

[76]  Peter Willemsen,et al.  The Influence of Restricted Viewing Conditions on Egocentric Distance Perception: Implications for Real and Virtual Indoor Environments , 2005, Perception.

[77]  P. Cavanagh,et al.  Position-based motion perception for color and texture stimuli: effects of contrast and speed , 1999, Vision Research.

[78]  Lucien Duckstein,et al.  Variable Perception Time in Car Following and Its Effect on Model Stability , 1970 .

[79]  A. W. Blackwell,et al.  Perception of circular heading from optical flow. , 1991, Journal of experimental psychology. Human perception and performance.

[80]  Walter C. Gogel,et al.  Familiar size and the theory of off-sized perceptions , 1987, Perception & psychophysics.

[81]  Candida Castro,et al.  Vehicle distance estimations in nighttime driving: a real-setting study☆ , 2005 .

[82]  J. Gibson The Ecological Approach to Visual Perception , 1979 .

[83]  Zijiang J. He,et al.  Terrain influences the accurate judgement of distance , 1998, Nature.

[84]  Pieter Padmos,et al.  Quality Criteria for Simulator Images: A Literature Review , 1992 .

[85]  Errol R. Hoffmann,et al.  Steering Reversals as a Measure of Driver Performance and Steering Task Difficulty , 1975 .

[86]  E Tenkink Lane keeping and speed choice with restricted sight distances , 1988 .

[87]  John A. Michon,et al.  The perception of lead vehicle movement in darkness , 1976 .

[88]  Richard M Wilkie,et al.  Driving as Night Falls The Contribution of Retinal Flow and Visual Direction to the Control of Steering , 2002, Current Biology.

[89]  Karel A. Brookhuis,et al.  On the assessment of (mental) workload and other subjective qualifications , 2002, Ergonomics.

[90]  Viola Cavallo,et al.  THE DEVELOPMENT OF DRIVING SIMULATORS : TOWARD A MULTISENSORY SOLUTION , 2008 .

[91]  D. Burr,et al.  The Ventriloquist Effect Results from Near-Optimal Bimodal Integration , 2004, Current Biology.

[92]  Albert Yonas,et al.  Improving the Ability of Drivers to Avoid Collisions with Snowplows in Fog and Snow , 2006 .

[93]  Axel Buchner,et al.  Car Backlight Position and Fog Density Bias Observer-Car Distance Estimates and Time-to-Collision Judgments , 2006, Hum. Factors.

[94]  D B Harte,et al.  Estimates of the Length of Highway Guidelines and Spaces , 1975, Human factors.

[95]  S. Blackburn,et al.  Contrast as a depth cue , 1994, Vision Research.

[96]  Rob Gray,et al.  A Two-Point Visual Control Model of Steering , 2004, Perception.

[97]  V. Cavallo,et al.  La surestimation de la distance intervéhiculaire dans le brouillard , 2000 .

[98]  Natasha Merat,et al.  Surrogate in-vehicle information systems and driver behaviour: effects of visual and cognitive load in simulated rural driving , 2005 .

[99]  R. Rothery,et al.  Detection of the Sign of Relative Motion When following a Vehicle , 1974, Human factors.

[100]  Jacques Droulez,et al.  Role of Lateral Acceleration in Curve Driving: Driver Model and Experiments on a Real Vehicle and a Driving Simulator , 2001, Hum. Factors.

[101]  E Brenner,et al.  Is Judging Time-to-Contact Based on ‘Tau’? , 1996, Perception.

[102]  Ludovic Leclercq,et al.  Hybrid approaches to the solutions of the "Lighthill-Whitham-Richards" model , 2007 .

[103]  John A. Michon,et al.  A critical view of driver behavior models: What do we know , 1985 .

[104]  David Crundall,et al.  THE VISUAL CONTROL OF STEERING AND DRIVING: WHERE DO WE LOOK WHEN NEGOTIATING CURVES? , 1999 .

[105]  M. Teghtsoonian,et al.  Scaling apparent distance in a natural outdoor setting , 1970 .

[106]  M. Banks Neuroscience: What You See and Hear Is What You Get , 2004, Current Biology.

[107]  Eric Dumont Caractérisation, modélisation et simulation des effets visuels du brouillard pour l'usager de la route. (Characterization, modelling and simulation of fog effects on road vision) , 2002 .

[108]  C Bonnet,et al.  Discrimination of Velocities and Mechanisms of Motion Perception , 1984, Perception.

[109]  C Berthelon,et al.  PERCEPTION OF ROAD USERS' MOTION , 2002 .

[110]  D. Regan,et al.  Simulated self-motion alters perceived time to collision , 2000, Current Biology.

[111]  F Saad CRITICAL CAR-FOLLOWING WHEN DRIVING ON AN URBAN MOTORWAY: ANALYSES OF THE SITUATIONAL DEMANDS AND DRIVER'S ACTIVITY IN REAL DRIVING CONDITIONS , 1996 .

[112]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[113]  Monique van der Hulst ADAPTIVE CONTROL OF SAFETY MARGINS IN DRIVING , 1999 .

[114]  James E. Cutting,et al.  Chapter 3 – Perceiving Layout and Knowing Distances: The Integration, Relative Potency, and Contextual Use of Different Information about Depth* , 1995 .

[115]  David C Knill,et al.  Reaching for visual cues to depth: the brain combines depth cues differently for motor control and perception. , 2005, Journal of vision.

[116]  M. Sivak The Information That Drivers Use: Is it Indeed 90% Visual? , 1996, Perception.

[117]  V Henn MODELE DE POURSUITE UTILISANT LES TECHNIQUES DE LA LOGIQUE FLOUE , 1997 .

[118]  R. Jacobs,et al.  Optimal integration of texture and motion cues to depth , 1999, Vision Research.

[119]  W. V. Winsum THE HUMAN ELEMENT IN CAR FOLLOWING MODELS , 1999 .

[120]  K A Brookhuis,et al.  A comparison of different ways to approximate time-to-line crossing (TLC) during car driving. , 2000, Accident; analysis and prevention.

[121]  Don Scott,et al.  Car following decisions under three visibility conditions and two speeds tested with a driving simulator. , 2007, Accident; analysis and prevention.

[122]  Talib Rothengatter,et al.  Strategic adaptations to lack of preview in driving , 1998 .

[123]  G Malaterre LES ACCIDENTS EN FILE SUR AUTOROUTE - EVALUATION A PRIORI DE L'IMPACT QUE POURRAIT AVOIR SUR LA SECURITE UN MEILLEUR RESPECT DES INTER-DISTANCES , 1991 .

[124]  A. M. Rohaly,et al.  The effects of contrast on perceived depth and depth discrimination , 1999, Vision Research.

[125]  David N. Lee,et al.  A Theory of Visual Control of Braking Based on Information about Time-to-Collision , 1976, Perception.

[126]  Dale Purves,et al.  A statistical explanation of visual space , 2003, Nature Neuroscience.

[127]  A Heino,et al.  Choice of time-headway in car-following and the role of time-to-collision information in braking. , 1996, Ergonomics.

[128]  James L. McClelland,et al.  The time course of perceptual choice: the leaky, competing accumulator model. , 2001, Psychological review.

[129]  A. H. Reinhardt-Rutland On Learning, Distance Overestimation and Mist-Related Motorway Casualties , 1992 .

[130]  J. Gibson Visually controlled locomotion and visual orientation in animals. , 1998, British journal of psychology.

[131]  Stephen T. Hammett,et al.  Speed can go up as well as down at low contrast: Implications for models of motion perception , 2006, Vision Research.

[132]  Brett R. Fajen,et al.  Behavioral Dynamics of Human Locomotion , 2004 .

[133]  Nicolas Hautière Détection des conditions de visibilité et estimation de la distance de visibilité par vision embarquée , 2005 .

[134]  Mike McDonald,et al.  Motorway driver behaviour: studies on car following , 2002 .

[135]  R. Jacobs What determines visual cue reliability? , 2002, Trends in Cognitive Sciences.

[136]  Farida Saad DRIVER STRATEGIES IN CAR-FOLLOWING SITUATIONS , 1996 .

[137]  Julie M. Harris,et al.  Minimum displacement thresholds for binocular three-dimensional motion , 2002, Vision Research.

[138]  F. Quere,et al.  Analyse spectrale des mouvements de volant par temps de brouillard sur simulateur de conduite , 1991 .

[139]  Stuart Anstis,et al.  Moving objects appear to slow down at low contrasts , 2003, Neural Networks.

[140]  Florence Rosey,et al.  Influence of fog on driver behaviour using driver simulator. INTRO deliverable 4 , 2007 .

[141]  Katsuya Matsunaga,et al.  Reaction Time while Driving with Insufficient Headway , 2001 .

[142]  Richard Wilkie,et al.  Controlling steering and judging heading: retinal flow, visual direction, and extraretinal information. , 2003, Journal of experimental psychology. Human perception and performance.

[143]  David Shinar,et al.  Minimum and Comfortable Driving Headways: Reality versus Perception , 2001, Hum. Factors.

[144]  T. Ranney Psychological factors that influence car-following and car-following model development , 1999 .

[145]  D J Jeffery,et al.  SOME ASPECTS OF MOTORWAY TRAFFIC BEHAVIOUR IN FOG , 1980 .

[146]  Viola Cavallo,et al.  Experimental validation of extended fog simulation techniques , 2007 .

[147]  Christopher C. Pagano,et al.  Comparing Verbal and Reaching Responses to Visually Perceived Egocentric Distances , 2001 .

[148]  Guy Wallis,et al.  An Unexpected Role for Visual Feedback in Vehicle Steering Control , 2002, Current Biology.

[149]  Erwin R. Boer,et al.  EVENT-BASED DRIVER PERFORMANCE ASSESSMENT , 2005 .

[150]  Gislin Dagnelie,et al.  A Developmental Deficit in Localizing Objects from Vision , 1995 .

[151]  M. Neboit,et al.  PERCEPTION,ANTICIPATION ET CONDUITE AUTOMOBILE. , 1974 .

[152]  J R McLean,et al.  The Effects of Restricted Preview on Driver Steering Control and Performance , 1973, Human factors.

[153]  W H Janssen THE PERCEPTION OF MANOEUVRES OF MOVING VEHICLES. PROGRESS REPORT VI (FINAL REPORT) IMPLICATIONS OF PSYCHOPHYSICAL THRESHOLD MEASUREMENTS FOR THE NIGHT DRIVING SITUATION , 1974 .

[154]  R. Ashworth,et al.  Further research on car-following models , 1972 .

[155]  Stéphane Caro,et al.  Risky driving in fog: psychological explanations , 2007 .

[156]  M. Godfroy,et al.  Spatial Variations of Visual—Auditory Fusion Areas , 2003, Perception.

[157]  Kristen L. Macuga,et al.  Long range interactions between object-motion and self-motion in the perception of movement in depth , 2004, Vision Research.

[158]  Peter Willemsen,et al.  Does the Quality of the Computer Graphics Matter when Judging Distances in Visually Immersive Environments? , 2004, Presence: Teleoperators & Virtual Environments.

[159]  Zijiang J. He,et al.  Perceiving distance accurately by a directional process of integrating ground information , 2004, Nature.

[160]  Lisbeth Harms The influence of sight distance on subjects' lateral control: a study of simulated driving in fog , 1993 .

[161]  H. Leibowitz The relation between the rate threshold for the perception of movement and luminance for various durations of exposure. , 1955, Journal of experimental psychology.

[162]  David C. Burr,et al.  Reaction time to motion onset of luminance and chromatic gratings is determined by perceived speed , 1998, Vision Research.

[163]  R. M. Michaels,et al.  Perceptual Factors in Car-Following , 1963 .

[164]  H Ross MIST, MURK AND VISUAL PERCEPTION , 1975 .

[165]  A R Lauer,et al.  FACTORS AFFECTING THE PERCEPTION OF RELATIVE MOTION AND DISTANCE BETWEEN VEHICLES AT NIGHT , 1951 .

[166]  Jorge A. Santos VEHICLE-MOTION DETECTION: INHIBITORY EFFECTS OF SELF-MOTION AND OPTICAL FLOW STRUCTURE , 1998 .

[167]  Brett R Fajen,et al.  Behavioral dynamics of steering, obstacle avoidance, and route selection. , 2003, Journal of experimental psychology. Human perception and performance.

[168]  Asad Saidpour,et al.  Detection and Avoidance of Collisions: the REACT Model , 2004 .

[169]  Zijiang J. He,et al.  Distance determined by the angular declination below the horizon , 2001, Nature.

[170]  S Krafczyk,et al.  OBJECT‐MOTION DETECTION AFFECTED BY CONCURRENT SELF‐MOTION PERCEPTION: APPLIED ASPECTS FOR VEHICLE GUIDANCE , 1987, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[171]  Rudolf G. Mortimer The Value of an Accelerator Release Signal , 1971 .

[172]  P. G. Gipps,et al.  A behavioural car-following model for computer simulation , 1981 .

[173]  Constance S. Royden,et al.  From vision to action: experiments and models of steering control during driving. , 2000, Journal of experimental psychology. Human perception and performance.

[174]  M Aron,et al.  CAR FOLLOWING IN AN URBAN NETWORK: SIMULATION AND EXPERIMENTS , 1988 .

[175]  Edmund Donges,et al.  A Two-Level Model of Driver Steering Behavior , 1978 .

[176]  B Elliott EFFECTIVE ROAD SAFETY CAMPAIGNS: A PRACTICAL HANDBOOK , 1989 .

[177]  R E Fenton,et al.  VELOCITY THRESHOLDS IN CAR-FOLLOWING AT NIGHT , 1966 .

[178]  M. Ernst,et al.  Humans integrate visual and haptic information in a statistically optimal fashion , 2002, Nature.

[179]  W. Epstein,et al.  Perception of space and motion , 1995 .