Inference and Modeling with Log-concave Distributions

Log-concave distributions are an attractive choice for modeling and inference, for several reasons: The class of log-concave distributions contains most of the commonly used parametric distributions and thus is a rich and flexible nonparametric class of distributions. Further, the MLE exists and can be computed with readily available algorithms. Thus, no tuning parameter, such as a bandwidth, is necessary for estimation. Due to these attractive properties, there has been considerable recent research activity concerning the theory and applications of log-concave distributions. This article gives a review of these results.

[1]  I. Ibragimov,et al.  On the Composition of Unimodal Distributions , 1956 .

[2]  U. Grenander On the theory of mortality measurement , 1956 .

[3]  J. Cooper TOTAL POSITIVITY, VOL. I , 1970 .

[4]  Mordecai Avriel,et al.  r-convex functions , 1972, Math. Program..

[5]  C. Borell Convex set functions ind-space , 1975 .

[6]  Richard E. Barlow,et al.  Statistical Theory of Reliability and Life Testing: Probability Models , 1976 .

[7]  H. Kushner,et al.  Rates of Convergence , 1978 .

[8]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[9]  B. Silverman,et al.  On the Estimation of a Probability Density Function by the Maximum Penalized Likelihood Method , 1982 .

[10]  Roger Fletcher,et al.  Practical methods of optimization; (2nd ed.) , 1987 .

[11]  Frank R. Hampel,et al.  Design, modelling, and analysis of some biological data sets , 1987 .

[12]  W. Chan,et al.  Unimodality, convexity, and applications , 1989 .

[13]  Andrew Caplin,et al.  Aggregation and Social Choice: A Mean Voter Theorem , 1991 .

[14]  J. Wellner,et al.  Information Bounds and Nonparametric Maximum Likelihood Estimation , 1992 .

[15]  W. Gilks,et al.  Adaptive Rejection Sampling for Gibbs Sampling , 1992 .

[16]  P. Massart,et al.  Rates of convergence for minimum contrast estimators , 1993 .

[17]  Olvi L. Mangasarian,et al.  Nuclear feature extraction for breast tumor diagnosis , 1993, Electronic Imaging.

[18]  Adrian F. M. Smith,et al.  Bayesian Inference for Generalized Linear and Proportional Hazards Models Via Gibbs Sampling , 1993 .

[19]  M. An Log-Concave Probability Distributions: Theory and Statistical Testing , 1996 .

[20]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[21]  L. Birge,et al.  Estimation of unimodal densities without smoothness assumptions , 1997 .

[22]  S. Brooks MCMC convergence diagnosis via multivariate bounds on log-concave densities , 1998 .

[23]  Geurt Jongbloed,et al.  The Iterative Convex Minorant Algorithm for Nonparametric Estimation , 1998 .

[24]  Mark Yuying An,et al.  Logconcavity versus Logconvexity: A Complete Characterization , 1998 .

[25]  Jean-Philippe Vial,et al.  Computing Maximum Likelihood Estimators of Convex Density Functions , 1998, SIAM J. Sci. Comput..

[26]  Franz Kappel,et al.  An Implementation of Shor's r-Algorithm , 2000, Comput. Optim. Appl..

[27]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[28]  Guenther Walther,et al.  Multiscale maximum likelihood analysis of a semiparametric model , 2001 .

[29]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[30]  G. Walther Detecting the Presence of Mixing with Multiscale Maximum Likelihood , 2002 .

[31]  M. Bagnoli,et al.  Log-concave probability and its applications , 2004 .

[32]  Mario Mateo,et al.  Estimating dark matter distributions , 2005 .

[33]  Jayanta Kumar Pal,et al.  Estimating a Polya Frequency Function , 2006 .

[34]  Guenther Walther,et al.  Clustering with mixtures of log-concave distributions , 2007, Comput. Stat. Data Anal..

[35]  K. Rufibach Computing maximum likelihood estimators of a log-concave density function , 2007 .

[36]  Jayanta Kumar Pal,et al.  Estimating a Polya frequency function$_2$ , 2007, 0708.1064.

[37]  Kaspar Rufibach,et al.  Active Set and EM Algorithms for Log-Concave Densities Based on Complete and Censored Data , 2007, 0707.4643.

[38]  Paul H. C. Eilers,et al.  Non-parametric log-concave mixtures , 2007, Comput. Stat. Data Anal..

[39]  L. Duembgen,et al.  Maximum likelihood estimation of a log-concave density and its distribution function: Basic properties and uniform consistency , 2007, 0709.0334.

[40]  P. Deb Finite Mixture Models , 2008 .

[41]  M. Cule,et al.  Maximum likelihood estimation of a multi‐dimensional log‐concave density , 2008, 0804.3989.

[42]  Samuel Müller,et al.  Smooth tail-index estimation , 2009 .

[43]  Robert B. Gramacy,et al.  Maximum likelihood estimation of a multivariate log-concave density , 2010 .

[44]  J. Wellner,et al.  Limit Distribution Theory for Maximum Likelihood Estimation of a Log-Concave Density. , 2007, Annals of statistics.

[45]  By W. R. GILKSt,et al.  Adaptive Rejection Sampling for Gibbs Sampling , 2010 .

[46]  R. Koenker,et al.  QUASI-CONCAVE DENSITY ESTIMATION , 2010, 1007.4013.

[47]  K. Rufibach Proposal of the vote of thanks in discussion of Cule, M., Samworth, R., and Stewart, M.: Maximum likelihood estimation of a multidimensional logconcave density , 2010 .

[48]  P. Eilers Unimodal smoothing , 2022 .