Hemocompatibility investigation of the NiTi alloy implanted with tantalum

[1]  Yan Li,et al.  Effective inhibition of nickel release by tantalum-implanted TiNi alloy and its cyto-compatibility evaluation in vitro , 2011 .

[2]  Yan Li,et al.  Effect of Ta2O5/TiO2 thin film on mechanical properties, corrosion and cell behavior of the NiTi alloy implanted with tantalum , 2010 .

[3]  J. Dahn,et al.  Fibrinogen adsorption onto 316L stainless steel, Nitinol and titanium , 2009 .

[4]  J. Shin,et al.  Hemocompatibility of surface-modified, silicon-incorporated, diamond-like carbon films. , 2009, Acta biomaterialia.

[5]  I. Zhitomirsky,et al.  Surface modifications of Nitinol for biomedical applications. , 2008, Colloids and surfaces. B, Biointerfaces.

[6]  J. Humbeeck,et al.  Critical overview of Nitinol surfaces and their modifications for medical applications. , 2008, Acta biomaterialia.

[7]  Tao Zhang,et al.  Corrosion behavior and surface characterization of tantalum implanted TiNi alloy , 2008 .

[8]  C. Liang,et al.  Study on hemocompatibility and corrosion behavior of ion implanted TiNi shape memory alloy and Co-based alloys. , 2007, Journal of biomedical materials research. Part A.

[9]  D. Grant,et al.  Surface modification of NiTi alloy and human platelet activation under static and flow conditions , 2007 .

[10]  Buddy D Ratner,et al.  The influence of surface energy on competitive protein adsorption on oxidized NiTi surfaces. , 2007, Biomaterials.

[11]  P. Kingshott,et al.  Effect of nitinol wire surface properties on albumin adsorption. , 2007, Acta biomaterialia.

[12]  V. Zhdanov,et al.  Enhancement of protein adsorption induced by surface roughness. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[13]  K. Jandt,et al.  Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation? , 2006, Colloids and surfaces. B, Biointerfaces.

[14]  Yufeng Zheng,et al.  The corrosion behavior and hemocompatibility of TiNi alloys coated with DLC by plasma based ion implantation , 2006 .

[15]  W. Lu,et al.  Enhancement of Surface Anti-Corrosion, Mechanical, and Biological Properties of Orthopedic Nickel-Titanium Shape Memory Alloys Using Carbon Plasma Immersion Ion Implantation and Deposition , 2006 .

[16]  W. Lu,et al.  Carbon plasma immersion ion implantation of nickel-titanium shape memory alloys. , 2005, Biomaterials.

[17]  M. Brook,et al.  Protein repellant silicone surfaces by covalent immobilization of poly(ethylene oxide). , 2005, Biomaterials.

[18]  W. Lu,et al.  Investigation of nickel suppression and cytocompatibility of surface-treated nickel-titanium shape memory alloys by using plasma immersion ion implantation. , 2005, Journal of biomedical materials research. Part A.

[19]  André Anders,et al.  Handbook of plasma immersion ion implantation and deposition , 2004 .

[20]  D. Grant,et al.  Biocompatibility and hemocompatibility of surface-modified NiTi alloys. , 2003, Journal of biomedical materials research. Part A.

[21]  Claude Martelet,et al.  Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour , 2003 .

[22]  N. Huang,et al.  Hemocompatibility of titanium oxide films. , 2003, Biomaterials.

[23]  L G Machado,et al.  Medical applications of shape memory alloys. , 2003, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[24]  M. Tabrizian,et al.  Nitinol versus stainless steel stents: acute thrombogenicity study in an ex vivo porcine model. , 2002, Biomaterials.

[25]  N. Huang,et al.  Antithrombogenic investigation of surface energy and optical bandgap and hemocompatibility mechanism of Ti(Ta(+5))O2 thin films. , 2002, Biomaterials.

[26]  W. Crone,et al.  Biocompatibility Improvement of NiTi with a Functionally Graded Surface , 2002 .

[27]  S. Shabalovskaya,et al.  Surface, corrosion and biocompatibility aspects of Nitinol as an implant material. , 2002, Bio-medical materials and engineering.

[28]  S. Goodman,et al.  Sheep, pig, and human platelet-material interactions with model cardiovascular biomaterials. , 1999, Journal of biomedical materials research.

[29]  R. Schwartz,et al.  Novel stents for the prevention of restenosis. , 1997, Trends in cardiovascular medicine.

[30]  Kinam Park,et al.  Grafting of PEO to glass, nitinol, and pyrolytic carbon surfaces by γ irradiation , 1997 .

[31]  Tomohiro Onda,et al.  Super Water-Repellent Surfaces Resulting from Fractal Structure , 1996 .

[32]  J. Palmaz,et al.  Intravascular stents: tissue-stent interactions and design considerations. , 1993, AJR. American journal of roentgenology.

[33]  H. Busscher Wettability of Surfaces in the Oral Cavity , 1992 .

[34]  C. P. Sharma,et al.  Titanium-Protein Interaction: Changes with Oxide Layer Thickness , 1991, Journal of biomaterials applications.