Multipartite entanglement swapping and mechanical cluster states

We present a protocol for generating multipartite quantum correlations across a quantum network with a continuous-variable architecture. An arbitrary number of users possess two-mode entangled states, keeping one mode while sending the other to a central relay. Here a suitable multipartite Bell detection is performed which conditionally generates a cluster state on the retained modes. This cluster state can be suitably manipulated by the parties and used for tasks of quantum communication in a fully optical scenario. More interestingly, the protocol can be used to create a purely-mechanical cluster state starting from a supply of optomechanical systems. We show that detecting the optical parts of optomechanical cavities may efficiently swap entanglement into their mechanical modes, creating cluster states up to 5 modes under suitable cryogenic conditions.

[1]  A. Furusawa,et al.  Hybrid discrete- and continuous-variable quantum information , 2014, Nature Physics.

[2]  Shota Yokoyama,et al.  Ultra-large-scale continuous-variable cluster states multiplexed in the time domain , 2013, Nature Photonics.

[3]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[4]  D. Gross,et al.  Novel schemes for measurement-based quantum computation. , 2006, Physical review letters.

[5]  M. Aspelmeyer,et al.  Squeezed light from a silicon micromechanical resonator , 2013, Nature.

[6]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[7]  S. Braunstein,et al.  Physics: Unite to build a quantum Internet , 2016, Nature.

[8]  G. Kurizki,et al.  Quantum technologies with hybrid systems , 2015, Proceedings of the National Academy of Sciences.

[9]  A. Serafini Quantum Continuous Variables: A Primer of Theoretical Methods , 2017 .

[10]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[11]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[12]  S. Pirandola Capacities of repeater-assisted quantum communications , 2016, 1601.00966.

[13]  S. Pirandola,et al.  Continuous-variable-entanglement swapping and its local certification: Entangling distant mechanical modes , 2013, 1312.0981.

[14]  A. Clerk,et al.  Entangled massive mechanical oscillators , 2017, 1711.01640.

[15]  H. Kimble,et al.  Teleportation of continuous quantum variables , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[16]  Seth Lloyd,et al.  Macroscopic entanglement by entanglement swapping. , 2006, Physical review letters.

[17]  Stefano Pirandola,et al.  Side-channel-free quantum key distribution. , 2011, Physical review letters.

[18]  Aires Ferreira,et al.  Optomechanical entanglement between a movable mirror and a cavity field , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[19]  Joshua A. Slater,et al.  Non-classical correlations between single photons and phonons from a mechanical oscillator , 2015, Nature.

[20]  Ladislav Mista,et al.  Gaussian localizable entanglement , 2007 .

[21]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[22]  Timothy C. Ralph,et al.  Continuous Variable Entanglement Swapping , 1999 .

[23]  S. Pirandola,et al.  Entanglement swapping with local certification: Application to remote micromechanical resonators , 2012, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[24]  L. Banchi,et al.  Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.

[25]  Harald Weinfurter,et al.  Experimental Bell-State Analysis , 1994 .

[26]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[27]  Stefano Mancini,et al.  Stationary entanglement between two movable mirrors in a classically driven Fabry–Perot cavity , 2006, quant-ph/0611038.

[28]  Zach DeVito,et al.  Opt , 2017 .

[29]  Samuel L. Braunstein,et al.  Continuous-variable quantum cryptography with an untrusted relay: Detailed security analysis of the symmetric configuration , 2015, 1506.05430.

[30]  A. Ferraro,et al.  Generation of cluster states in optomechanical quantum systems , 2015, 1508.02264.

[31]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[32]  M. Popp,et al.  Localizable Entanglement , 2004 .

[33]  Mixed-state localizable entanglement for continuous variables , 2008 .

[34]  S. Braunstein,et al.  Continuous-variable Gaussian analog of cluster states , 2006 .

[35]  Ilgaitis Prūsis,et al.  Nature of Photon , 2019 .

[36]  Gerardo Adesso,et al.  Unitarily localizable entanglement of gaussian states , 2005 .

[37]  S. Braunstein,et al.  Unconditional teleportation of continuous-variable entanglement , 1999, QELS 2000.

[38]  Braunstein,et al.  Multipartite entanglement for continuous variables: A quantum teleportation network , 1999, Physical review letters.

[39]  J. Eisert,et al.  Advances in quantum teleportation , 2015, Nature Photonics.

[40]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[41]  Travis Norsen,et al.  Bell's theorem , 2011, Scholarpedia.

[42]  Jian-Wei Pan,et al.  Experimental multiparticle entanglement swapping for quantum networking. , 2009, Physical review letters.

[43]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[44]  M. Aspelmeyer,et al.  Remote quantum entanglement between two micromechanical oscillators , 2017, Nature.

[45]  Stefano Pirandola,et al.  High-rate measurement-device-independent quantum cryptography , 2013, Nature Photonics.

[46]  F. Illuminati,et al.  Gaussian measures of entanglement versus negativities: Ordering of two-mode Gaussian states , 2005, quant-ph/0506124.

[47]  O. Painter,et al.  Design of a quasi-2D photonic crystal optomechanical cavity with tunable, large x2-coupling. , 2016, Optics express.

[48]  Stefano Pirandola,et al.  Finite-size analysis of measurement-device-independent quantum cryptography with continuous variables , 2017, 1707.04599.

[49]  Stabilized entanglement of massive mechanical oscillators , 2018, Nature.

[50]  P. Knight,et al.  Multiparticle generalization of entanglement swapping , 1998 .

[51]  A. Furusawa,et al.  Demonstration of a quantum teleportation network for continuous variables , 2004, Nature.

[52]  T. Ralph,et al.  Universal quantum computation with continuous-variable cluster states. , 2006, Physical review letters.

[53]  Gerardo Adesso,et al.  Continuous Variable Quantum Information: Gaussian States and Beyond , 2014, Open Syst. Inf. Dyn..

[54]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[55]  T. Palomaki,et al.  Entangling Mechanical Motion with Microwave Fields , 2013, Science.

[56]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[57]  Kai Chen,et al.  Multistage entanglement swapping. , 2008, Physical review letters.

[58]  Seth Lloyd,et al.  Correlation matrices of two-mode bosonic systems , 2009, 0902.1502.

[59]  M. Nielsen Optical quantum computation using cluster States. , 2004, Physical review letters.

[60]  C. Regal,et al.  Strong Optomechanical Squeezing of Light , 2013, 1306.1268.

[61]  Mann,et al.  Measurement of the Bell operator and quantum teleportation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[62]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[63]  Thierry Botter,et al.  Non-classical light generated by quantum-noise-driven cavity optomechanics , 2012, Nature.

[64]  S. Gigan,et al.  Reconstructing the dynamics of a movable mirror in a detuned optical cavity , 2006 .

[65]  S. Lloyd,et al.  Reply to 'Discrete and continuous variables for measurement-device-independent quantum cryptography' , 2015 .

[66]  T. A. Palomaki,et al.  Coherent state transfer between itinerant microwave fields and a mechanical oscillator , 2012, Nature.