A G protein-coupled receptor at work: the rhodopsin model.

[1]  Patrick Scheerer,et al.  Structural and kinetic modeling of an activating helix switch in the rhodopsin-transducin interface , 2009, Proceedings of the National Academy of Sciences.

[2]  Xavier Deupi,et al.  The effect of ligand efficacy on the formation and stability of a GPCR-G protein complex , 2009, Proceedings of the National Academy of Sciences.

[3]  Krzysztof Palczewski,et al.  Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors , 2009, Proceedings of the National Academy of Sciences.

[4]  S. Rasmussen,et al.  The structure and function of G-protein-coupled receptors , 2009, Nature.

[5]  Thomas M Frimurer,et al.  Ligand binding and micro-switches in 7TM receptor structures. , 2009, Trends in pharmacological sciences.

[6]  H. Khorana,et al.  Location of the Retinal Chromophore in the Activated State of Rhodopsin* , 2009, Journal of Biological Chemistry.

[7]  Lila M. Gierasch,et al.  Sending Signals Dynamically , 2009, Science.

[8]  H. Hamm,et al.  Helix dipole movement and conformational variability contribute to allosteric GDP release in Galphai subunits. , 2009, Biochemistry.

[9]  Ron O Dror,et al.  Identification of two distinct inactive conformations of the β2-adrenergic receptor reconciles structural and biochemical observations , 2009, Proceedings of the National Academy of Sciences.

[10]  Oliver P. Ernst,et al.  A Ligand Channel through the G Protein Coupled Receptor Opsin , 2009, PloS one.

[11]  Viktor Hornak,et al.  Helix Movement is Coupled to Displacement of the Second Extracellular Loop in Rhodopsin Activation , 2009, Nature Structural &Molecular Biology.

[12]  Raymond C Stevens,et al.  Discovery of new GPCR biology: one receptor structure at a time. , 2009, Structure.

[13]  K. Palczewski,et al.  Topology of Class A G Protein-Coupled Receptors: Insights Gained from Crystal Structures of Rhodopsins, Adrenergic and Adenosine Receptors , 2009, Molecular Pharmacology.

[14]  Nagarajan Vaidehi,et al.  Modeling small molecule-compound binding to G-protein-coupled receptors. , 2009, Methods in enzymology.

[15]  W. Weis,et al.  Structural insights into G-protein-coupled receptor activation. , 2008, Current opinion in structural biology.

[16]  R. Stevens,et al.  The 2.6 Angstrom Crystal Structure of a Human A2A Adenosine Receptor Bound to an Antagonist , 2008, Science.

[17]  Michael F. Brown,et al.  Two protonation switches control rhodopsin activation in membranes , 2008, Proceedings of the National Academy of Sciences.

[18]  M. P. Heyn,et al.  Monitoring the conformational changes of photoactivated rhodopsin from microseconds to seconds by transient fluorescence spectroscopy. , 2008, Biochemistry.

[19]  Oliver P. Ernst,et al.  Crystal structure of opsin in its G-protein-interacting conformation , 2008, Nature.

[20]  Thomas Huber,et al.  Functional role of the "ionic lock"--an interhelical hydrogen-bond network in family A heptahelical receptors. , 2008, Journal of molecular biology.

[21]  R. Crouch,et al.  11-cis- and all-trans-retinols can activate rod opsin: rational design of the visual cycle. , 2008, Biochemistry.

[22]  Patrick Scheerer,et al.  Crystal structure of the ligand-free G-protein-coupled receptor opsin , 2008, Nature.

[23]  Matthias Elgeti,et al.  Activity Switches of Rhodopsin † , 2008, Photochemistry and photobiology.

[24]  Gebhard F. X. Schertler,et al.  Structure of a β1-adrenergic G-protein-coupled receptor , 2008, Nature.

[25]  E. Zaitseva,et al.  Structural Impact of the E113Q Counterion Mutation on the Activation and Deactivation Pathways of the G Protein-coupled Receptor Rhodopsin , 2008, Journal of molecular biology.

[26]  C. Altenbach,et al.  High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation , 2008, Proceedings of the National Academy of Sciences.

[27]  Tsutomu Kouyama,et al.  Crystal structure of squid rhodopsin , 2008, Nature.

[28]  T. Huber,et al.  Rapid incorporation of functional rhodopsin into nanoscale apolipoprotein bound bilayer (NABB) particles. , 2008, Journal of molecular biology.

[29]  H. Schiöth,et al.  Structural diversity of G protein-coupled receptors and significance for drug discovery , 2008, Nature Reviews Drug Discovery.

[30]  Stefan Günther,et al.  Hydrogen-bonding and packing features of membrane proteins: functional implications. , 2008, Biophysical journal.

[31]  W. Hubbell,et al.  Rhodopsin and 9-Demethyl-retinal Analog , 2008, Journal of Biological Chemistry.

[32]  Krzysztof Palczewski,et al.  Efficient Coupling of Transducin to Monomeric Rhodopsin in a Phospholipid Bilayer* , 2008, Journal of Biological Chemistry.

[33]  H. Hamm,et al.  Heterotrimeric G protein activation by G-protein-coupled receptors , 2008, Nature Reviews Molecular Cell Biology.

[34]  W. Hubbell,et al.  Sequence of late molecular events in the activation of rhodopsin , 2007, Proceedings of the National Academy of Sciences.

[35]  M. Burghammer,et al.  Crystal structure of the human β2 adrenergic G-protein-coupled receptor , 2007, Nature.

[36]  Manfred Burghammer,et al.  Crystal structure of a thermally stable rhodopsin mutant. , 2007, Journal of molecular biology.

[37]  Xavier Deupi,et al.  Conformational complexity of G-protein-coupled receptors. , 2007, Trends in pharmacological sciences.

[38]  Martin Heck,et al.  Monomeric G protein-coupled receptor rhodopsin in solution activates its G protein transducin at the diffusion limit , 2007, Proceedings of the National Academy of Sciences.

[39]  D. Oprian,et al.  Transducin Activation by Nanoscale Lipid Bilayers Containing One and Two Rhodopsins* , 2007, Journal of Biological Chemistry.

[40]  Gilles Labesse,et al.  Common Structural Requirements for Heptahelical Domain Function in Class A and Class C G Protein-coupled Receptors* , 2007, Journal of Biological Chemistry.

[41]  M. Sheves,et al.  Coupling of Protonation Switches During Rhodopsin Activation † , 2007, Photochemistry and photobiology.

[42]  Leonardo Pardo,et al.  The Role of Internal Water Molecules in the Structure and Function of the Rhodopsin Family of G Protein‐Coupled Receptors , 2007, Chembiochem : a European journal of chemical biology.

[43]  Hue Sun Chan,et al.  Hydrophobic association of alpha-helices, steric dewetting, and enthalpic barriers to protein folding. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[44]  R. Stevens,et al.  High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. , 2007, Science.

[45]  K. Ridge,et al.  NMR analysis of rhodopsin–transducin interactions , 2006, Vision Research.

[46]  D. Kliger,et al.  Lumi I → Lumi II: The Last Detergent Independent Process in Rhodopsin Photoexcitation† , 2006 .

[47]  Krzysztof Palczewski,et al.  Crystal structure of a photoactivated deprotonated intermediate of rhodopsin , 2006, Proceedings of the National Academy of Sciences.

[48]  Reinhart Heinrich,et al.  Building functional modules from molecular interactions. , 2006, Trends in biochemical sciences.

[49]  T. Okada,et al.  Local peptide movement in the photoreaction intermediate of rhodopsin , 2006, Proceedings of the National Academy of Sciences.

[50]  Ned Van Eps,et al.  Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins , 2006, Nature Structural &Molecular Biology.

[51]  T. Okada,et al.  Crystallographic analysis of primary visual photochemistry. , 2006, Angewandte Chemie.

[52]  Krzysztof Palczewski,et al.  G protein-coupled receptor rhodopsin. , 2006, Annual review of biochemistry.

[53]  Viktor Hornak,et al.  Location of Trp265 in metarhodopsin II: implications for the activation mechanism of the visual receptor rhodopsin. , 2006, Journal of molecular biology.

[54]  A. Hirshfeld,et al.  Agonists and partial agonists of rhodopsin: retinal polyene methylation affects receptor activation. , 2006, Biochemistry.

[55]  T. Schwartz,et al.  Molecular mechanism of 7TM receptor activation--a global toggle switch model. , 2006, Annual review of pharmacology and toxicology.

[56]  Klaus Gerwert,et al.  Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy , 2006, Nature.

[57]  H. Ahorn,et al.  The Carboxyl Terminus of the Gα-Subunit Is the Latch for Triggered Activation of Heterotrimeric G Proteins , 2006, Molecular Pharmacology.

[58]  H. Ahorn,et al.  The carboxyl terminus of the Galpha-subunit is the latch for triggered activation of heterotrimeric G proteins. , 2006, Molecular pharmacology.

[59]  Steffen Lüdeke,et al.  The role of Glu181 in the photoactivation of rhodopsin. , 2005, Journal of molecular biology.

[60]  K. Palczewski,et al.  Partial Agonism in a G Protein-coupled Receptor , 2005, Journal of Biological Chemistry.

[61]  T. Morizumi,et al.  Direct observation of the complex formation of GDP-bound transducin with the rhodopsin intermediate having a visible absorption maximum in rod outer segment membranes. , 2005, Biochemistry.

[62]  Robert J. Lefkowitz,et al.  Transduction of Receptor Signals by ß-Arrestins , 2005, Science.

[63]  K. Hofmann,et al.  Transition of Rhodopsin into the Active Metarhodopsin II State Opens a New Light-induced Pathway Linked to Schiff Base Isomerization* , 2004, Journal of Biological Chemistry.

[64]  T. Mielke,et al.  Electron crystallography reveals the structure of metarhodopsin I , 2004, The EMBO journal.

[65]  Marcus Elstner,et al.  The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. , 2004, Journal of molecular biology.

[66]  T. Lamb,et al.  Dark adaptation and the retinoid cycle of vision , 2004, Progress in Retinal and Eye Research.

[67]  Yang Xiang,et al.  Sequential binding of agonists to the beta2 adrenoceptor. Kinetic evidence for intermediate conformational states. , 2004, The Journal of biological chemistry.

[68]  Manfred Burghammer,et al.  Structure of bovine rhodopsin in a trigonal crystal form. , 2003, Journal of molecular biology.

[69]  K. Palczewski,et al.  G protein-coupled receptor rhodopsin: a prospectus. , 2003, Annual review of physiology.

[70]  P. Tavan,et al.  Deactivation of rhodopsin in the transition from the signaling state meta II to meta III involves a thermal isomerization of the retinal chromophore C[double bond]D. , 2003, Biochemistry.

[71]  R. Mathies,et al.  Retinal counterion switch in the photoactivation of the G protein-coupled receptor rhodopsin , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[72]  D. Farrens,et al.  Stability of Dark State Rhodopsin Is Mediated by a Conserved Ion Pair in Intradiscal Loop E-2* , 2003, The Journal of Biological Chemistry.

[73]  Krzysztof Palczewski,et al.  Sequence analyses of G-protein-coupled receptors: similarities to rhodopsin. , 2003, Biochemistry.

[74]  Krzysztof Palczewski,et al.  Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[75]  K. Palczewski,et al.  Signaling States of Rhodopsin , 2003, The Journal of Biological Chemistry.

[76]  D. Oprian,et al.  An opsin mutant with increased thermal stability. , 2003, Biochemistry.

[77]  J. Ballesteros,et al.  Beta2 adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. , 2002, The Journal of biological chemistry.

[78]  Harel Weinstein,et al.  Conserved Helix 7 Tyrosine Acts as a Multistate Conformational Switch in the 5HT2C Receptor , 2002, The Journal of Biological Chemistry.

[79]  A. Bax,et al.  Structure and orientation of a G protein fragment in the receptor bound state from residual dipolar couplings. , 2002, Journal of molecular biology.

[80]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[81]  E. Meng,et al.  Receptor activation: what does the rhodopsin structure tell us? , 2001, Trends in pharmacological sciences.

[82]  R. Vogel,et al.  Conformations of the Active and Inactive States of Opsin* , 2001, The Journal of Biological Chemistry.

[83]  J. Ballesteros,et al.  Activation of the β2-Adrenergic Receptor Involves Disruption of an Ionic Lock between the Cytoplasmic Ends of Transmembrane Segments 3 and 6* , 2001, The Journal of Biological Chemistry.

[84]  K. Palczewski,et al.  Activation of rhodopsin: new insights from structural and biochemical studies. , 2001, Trends in biochemical sciences.

[85]  M. Cornwall,et al.  Role of Noncovalent Binding of 11-cis-Retinal to Opsin in Dark Adaptation of Rod and Cone Photoreceptors , 2001, Neuron.

[86]  Krzysztof Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Science.

[87]  W. Gärtner,et al.  Signaling States of Rhodopsin , 2000, The Journal of Biological Chemistry.

[88]  K. Hofmann,et al.  Signal transfer from rhodopsin to the G-protein: evidence for a two-site sequential fit mechanism. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[89]  G R Marshall,et al.  Light-activated rhodopsin induces structural binding motif in G protein alpha subunit. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[90]  C. Cowan,et al.  A comparison of the efficiency of G protein activation by ligand-free and light-activated forms of rhodopsin. , 1997, Biophysical journal.

[91]  A. Scheer,et al.  The activation process of the alpha1B-adrenergic receptor: potential role of protonation and hydrophobicity of a highly conserved aspartate. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[92]  H. Khorana,et al.  Requirement of Rigid-Body Motion of Transmembrane Helices for Light Activation of Rhodopsin , 1996, Science.

[93]  O. Lichtarge,et al.  Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F , 1996, Nature.

[94]  K. Palczewski,et al.  Mechanisms of Opsin Activation* , 1996, The Journal of Biological Chemistry.

[95]  T. Sakmar,et al.  Characterization of Rhodopsin Mutants That Bind Transducin but Fail to Induce GTP Nucleotide Uptake , 1995, The Journal of Biological Chemistry.

[96]  J. Ballesteros,et al.  [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors , 1995 .

[97]  M. Cornwall,et al.  Bleached pigment activates transduction in isolated rods of the salamander retina. , 1994, The Journal of physiology.

[98]  K. Fahmy,et al.  A conserved carboxylic acid group mediates light-dependent proton uptake and signaling by rhodopsin. , 1994, The Journal of biological chemistry.

[99]  K. Hofmann,et al.  Interaction between photoactivated rhodopsin and its kinase: stability and kinetics of complex formation. , 1993, Biochemistry.

[100]  K. Hideg,et al.  Photoactivated conformational changes in rhodopsin: a time-resolved spin label study. , 1993, Science.

[101]  K. Hofmann,et al.  Two different forms of metarhodopsin II: Schiff base deprotonation precedes proton uptake and signaling state. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[102]  D. Oprian,et al.  Constitutive activation of opsin: influence of charge at position 134 and size at position 296. , 1993, Biochemistry.

[103]  D. Oprian,et al.  Mechanism of activation and inactivation of opsin: role of Glu113 and Lys296. , 1992, Biochemistry.

[104]  H. Khorana,et al.  Rhodopsin mutants that bind but fail to activate transducin. , 1990, Science.

[105]  M. Gutman,et al.  The dynamic aspects of proton transfer processes , 1990 .

[106]  H. Hamm,et al.  Site of G protein binding to rhodopsin mapped with synthetic peptides from the alpha subunit. , 1988, Science.

[107]  R. Lefkowitz,et al.  A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. , 1980, The Journal of biological chemistry.