Disulfide bonds Cys9–Cys57, Cys34–Cys88 and Cys38–Cys90 of the β-subunit of human chorionic gonadotropin are crucial for heterodimer formation with the α-subunit: experimental evidence for the conclusions from the crystal structure of hCG

[1]  S. Mahale,et al.  A detailed study of the L2beta long-loop region of human chorionic gonadotrophin suggests it to be spatially close to, but not part of, the receptor-binding site. , 2002, The Journal of endocrinology.

[2]  S. Mahale,et al.  Mapping the receptor binding regions of human chorionic gonadotropin (hCG) using disulfide peptides of its beta-subunit: possible involvement of the disulfide bonds Cys(9)-Cys(57) and Cys(23)-Cys(72) in receptor binding of the hormone. , 2001, The journal of peptide research : official journal of the American Peptide Society.

[3]  R. Ruddon,et al.  Cystine knot mutations affect the folding of the glycoprotein hormone alpha-subunit. Differential secretion and assembly of partially folded intermediates. , 2000, The Journal of biological chemistry.

[4]  S. Mahale,et al.  Identification of bioneutralization epitopes of human follicle stimulating hormone in the regions 31-52 and 66-75 of its beta-subunit. , 1997, Journal of reproductive immunology.

[5]  W. Moyle,et al.  The lutropin β-subunit N-terminus facilitates subunit combination by offsetting the inhibitory effects of residues needed for LH activity , 1995, Molecular and Cellular Endocrinology.

[6]  D. C. Harris,et al.  Crystal structure of human chorionic gonadotropin , 1994, Nature.

[7]  W A Hendrickson,et al.  Structure of human chorionic gonadotropin at 2.6 A resolution from MAD analysis of the selenomethionyl protein. , 1994, Structure.

[8]  Usa Serono Symposia,et al.  Glycoprotein hormones : structure, function, and clinical implications , 1994 .

[9]  P. Roche,et al.  A receptor binding site identified in the region 81–95 of the β-subunit of human luteinizing hormone (LH) and chorionic gonadotropin (hCG) , 1993, Molecular and Cellular Endocrinology.

[10]  J. R. Huth,et al.  Disulfide bond mutations affect the folding of the human chorionic gonadotropin-beta subunit in transfected Chinese hamster ovary cells. , 1993, Journal of Biological Chemistry.

[11]  H. Keutmann,et al.  A subunit interaction site in human luteinizing hormone: identification by photoaffinity cross-linking. , 1993, Endocrinology.

[12]  D. Puett,et al.  Replacement of the invariant tyrosine in the CAGY region of the human chorionic gonadotropin β subunit , 1993, Molecular and Cellular Endocrinology.

[13]  D. Puett,et al.  Mutagenesis of the ‘determinant loop’ region of human choriogonadotropin β , 1993, Molecular and Cellular Endocrinology.

[14]  S. Mahale,et al.  Search for peptide immunogens of the beta-subunit of human chorionic gonadotropin (hCG) capable of eliciting hormone specific and neutralizing antisera. Identification of an undecapeptide eliciting hCG-specific antisera. , 2009, International journal of peptide and protein research.

[15]  J. Dias,et al.  Determination of subunit contact-associated epitopes of the beta-subunit of human follicle-stimulating hormone. , 1991, Endocrinology.

[16]  K. Miyai,et al.  Site-specific mutagenesis of human chorionic gonadotrophin (hCG)-beta subunit: influence of mutation on hCG production. , 1990, Journal of molecular endocrinology.

[17]  J. Garnier,et al.  Peptide mapping of intersubunit and receptor interactions of human choriogonadotropin , 1990, Molecular and Cellular Endocrinology.

[18]  Y. Hayashizaki,et al.  Thyroid‐stimulating hormone (TSH) deficiency caused by a single base substitution in the CAGYC region of the beta‐subunit. , 1989, The EMBO journal.

[19]  H. Keutmann,et al.  Structure-function relationships of gonadotropins. , 1987, Recent progress in hormone research.