Laminar flame speeds and ignition delay times for isopropyl nitrate and propane blends

[1]  Peter Glarborg,et al.  Combustion chemistry in the twenty-first century: Developing theory-informed chemical kinetics models , 2021 .

[2]  Christopher A. Almodovar,et al.  Laser schlieren study of the thermal decomposition of 2-ethylhexyl-nitrate , 2020 .

[3]  Lei Lei,et al.  Mixture rules and falloff are now major uncertainties in experimentally derived rate parameters for H + O2 (+M) ↔ HO2 (+M) , 2020 .

[4]  R. Lucht,et al.  Ignition and combustion characterization of single nitromethane and isopropyl nitrate monopropellant droplets under high-temperature and quasi-steady conditions , 2020 .

[5]  M. Fuller,et al.  A Shock Tube Laser Schlieren Study of the Pyrolysis of Isopropyl Nitrate. , 2019, The journal of physical chemistry. A.

[6]  N. Chaumeix,et al.  Combustion properties of H2/N2/O2/steam mixtures , 2019, Proceedings of the Combustion Institute.

[7]  M. Fuller,et al.  On the relative importance of HONO versus HNO2 in low-temperature combustion , 2019, Proceedings of the Combustion Institute.

[8]  C. Goldsmith,et al.  Predictive kinetics for the thermal decomposition of RDX , 2019, Proceedings of the Combustion Institute.

[9]  R. Sivaramakrishnan,et al.  Direct measurements of channel specific rate constants in OH + C3H8 illuminates prompt dissociations of propyl radicals , 2019, Proceedings of the Combustion Institute.

[10]  James A. Miller,et al.  Modeling nitrogen chemistry in combustion , 2018, Progress in Energy and Combustion Science.

[11]  A. Ambekar,et al.  Burn rate characterization of desensitized isopropyl nitrate blends , 2018 .

[12]  R. West,et al.  The impact of roaming radicals on the combustion properties of transportation fuels , 2017, Combustion and Flame.

[13]  S. Klippenstein,et al.  Ab Initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species. , 2017, The journal of physical chemistry. A.

[14]  M. P. Burke,et al.  Evaluating Mixture Rules for Multi-Component Pressure Dependence: H + O2 (+M) = HO2 (+M) , 2017 .

[15]  C. Goldsmith,et al.  Rate coefficients for fuel + NO2: Predictive kinetics for HONO and HNO2 formation , 2017 .

[16]  James A. Miller,et al.  Ramifications of including non-equilibrium effects for HCO in flame chemistry , 2017 .

[17]  Y. Bedjanian,et al.  Thermal Decomposition of Isopropyl Nitrate: Kinetics and Products. , 2016, The journal of physical chemistry. A.

[18]  E. Ranzi,et al.  Laminar flame speeds of pentanol isomers: An experimental and modeling study , 2016 .

[19]  James A. Miller,et al.  Weakly Bound Free Radicals in Combustion: "Prompt" Dissociation of Formyl Radicals and Its Effect on Laminar Flame Speeds. , 2016, The journal of physical chemistry letters.

[20]  S. Klippenstein,et al.  Thermal Dissociation and Roaming Isomerization of Nitromethane: Experiment and Theory. , 2015, The journal of physical chemistry. A.

[21]  A. Ambekar,et al.  Burn rate characterization of iso-propyl nitrate – A neglected monopropellant , 2015 .

[22]  Rolf D. Reitz,et al.  Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines , 2015 .

[23]  C. Schulz,et al.  Experimental study of the kinetics of ethanol pyrolysis and oxidation behind reflected shock waves and in laminar flames , 2015 .

[24]  William J. Pitz,et al.  Experimental and modeling study of fuel interactions with an alkyl nitrate cetane enhancer, 2-ethyl-hexyl nitrate , 2015 .

[25]  C. Law,et al.  Uncertainty in stretch extrapolation of laminar flame speed from expanding spherical flames , 2015 .

[26]  Y. Ju,et al.  Radiation-induced uncertainty in laminar flame speed measured from propagating spherical flames , 2014 .

[27]  D. Splitter,et al.  Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines , 2014 .

[28]  Nabiha Chaumeix,et al.  Comparative Study on Cyclohexane and Decalin Oxidation , 2014 .

[29]  F. Dryer,et al.  Uncertainties in interpretation of high pressure spherical flame propagation rates due to thermal radiation , 2014 .

[30]  Rolf D. Reitz,et al.  RCCI Engine Operation Towards 60% Thermal Efficiency , 2013 .

[31]  Rolf D. Reitz,et al.  Effect of Cetane Improvers on Gasoline, Ethanol, and Methanol Reactivity and the Implications for RCCI Combustion , 2013 .

[32]  James A. Miller,et al.  Unimolecular dissociation of hydroxypropyl and propoxy radicals , 2013 .

[33]  Donald G. Truhlar,et al.  Improving the Accuracy of Hybrid Meta-GGA Density Functionals by Range Separation , 2011 .

[34]  S. Grimme,et al.  A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. , 2011, Physical chemistry chemical physics : PCCP.

[35]  Rolf D. Reitz,et al.  High Efficiency, Low Emissions RCCI Combustion by Use of a Fuel Additive , 2010 .

[36]  Jaap de Vries,et al.  Laminar Flame Speed Measurements and Modeling of Pure Alkanes and Alkane Blends at Elevated Pressures , 2010 .

[37]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[38]  M. Rissanen,et al.  Kinetics of the R + NO2 reactions (R = i-C3H7, n-C3H7, s-C4H9, and t-C4H9) in the temperature range 201-489 K. , 2010, The journal of physical chemistry. A.

[39]  Frederick R Manby,et al.  Local explicitly correlated second-order perturbation theory for the accurate treatment of large molecules. , 2009, The Journal of chemical physics.

[40]  Hans-Joachim Werner,et al.  Simplified CCSD(T)-F12 methods: theory and benchmarks. , 2009, The Journal of chemical physics.

[41]  John M. Simmie,et al.  A rapid compression machine study of the oxidation of propane in the negative temperature coefficient regime , 2008 .

[42]  Hans-Joachim Werner,et al.  A simple and efficient CCSD(T)-F12 approximation. , 2007, The Journal of chemical physics.

[43]  S. Grimme Semiempirical hybrid density functional with perturbative second-order correlation. , 2006, The Journal of chemical physics.

[44]  Grunde Jomaas,et al.  Experimental determination of counterflow ignition temperatures and laminar flame speeds of C2–C3 hydrocarbons at atmospheric and elevated pressures , 2005 .

[45]  F. Dryer,et al.  THE INITIAL TEMPERATURE AND N2 DILUTION EFFECT ON THE LAMINAR FLAME SPEED OF PROPANE/AIR , 2004 .

[46]  John M. Simmie,et al.  Ignition of alkyl nitrate/oxygen/argon mixtures in shock waves and comparisons with alkanes and amines , 2003 .

[47]  John B. Heywood,et al.  Two-stage ignition in HCCI combustion and HCCI control by fuels and additives , 2003 .

[48]  Vitali V. Lissianski,et al.  Combustion chemistry of propane: A case study of detailed reaction mechanism optimization , 2000 .

[49]  R. Yetter,et al.  The Autoignition Behavior of Surrogate Diesel Fuel Mixtures and the Chemical Effects of 2-Ethylhexyl Nitrate (2-EHN) Cetane Improver , 1999 .

[50]  G. Suppes,et al.  Cetane-Improver Analysis and Impact of Activation Energy on the Relative Performance of 2-Ethylhexyl Nitrate and Tetraethylene Glycol Dinitrate , 1997 .

[51]  I. Zaslonko,et al.  High-temperature decomposition of methyl, ethyl, and isopropyl nitrates in shock waves , 1993 .

[52]  P. Ronney,et al.  A theoretical study of propagation and extinction of nonsteady spherical flame fronts , 1989 .

[53]  Peter Gray,et al.  Rapid compression studies on spontaneous ignition of isopropyl nitrate art I: Nonexplosive decomposition, explosive oxidation and conditions for safe handling , 1980 .

[54]  Peter Gray,et al.  Rapid compression studies on spontaneous ignition of isopropyl nitrate Part II: Rapid sampling, intermediate stages and reaction mechanisms , 1980 .

[55]  J. Griffiths,et al.  Pyrolysis of isopropyl nitrate—II. Decomposition at high temperatures and pressures , 1976 .

[56]  J. Griffiths,et al.  Pyrolysis of isopropyl nitrate. I. Decomposition at low temperatures and pressures , 1975 .