Elasto-viscoplastic analysis for negative through-the-thickness Poisson’s ratio of woven laminate composites based on homogenization theory

[1]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[2]  N. Kikuchi,et al.  A class of general algorithms for multi-scale analyses of heterogeneous media , 2001 .

[3]  Nobutada Ohno,et al.  A homogenization theory for time-dependentnonlinear composites with periodic internal structures , 1999 .

[4]  N. Ohno,et al.  Homogenization of fin layers in tube-fin structures subjected to compression and bending: Analyses and experiments , 2016 .

[5]  K. Shizawa,et al.  Homogenized molecular chain plasticity simulation for crystalline polymer using craze evolution model based on chemical kinetics , 2015 .

[6]  N. Ohno,et al.  Homogenized elastic–viscoplastic behavior of plate-fin structures with two pore pressures , 2014 .

[7]  N. Ohno,et al.  Effects of Fiber Arrangement on Negative Poisson’s Ratio of Angle-Ply CFRP Laminates: Analysis Based on a Homogenization Theory , 2015 .

[8]  V. Carvelli,et al.  A homogenization procedure for the numerical analysis of woven fabric composites , 2001 .

[9]  N. Takano,et al.  Macro/micro simultaneous validation for multiscale analysis of semi-periodically perforated plate using full-field strain measurement , 2016 .

[10]  Peter Hine,et al.  Negative Poisson's ratios in angle-ply laminates: theory and experiment , 1994 .

[11]  N. Ohno,et al.  Homogenized in-plane elastic-viscoplastic behavior of long fiber-reinforced laminates , 2002 .

[12]  T. Matsuda,et al.  Evaluation of thermo-viscoelastic property of CFRP laminate based on a homogenization theory , 2010 .

[13]  Volnei Tita,et al.  Damage modeling for carbon fiber/epoxy filament wound composite tubes under radial compression , 2017 .

[14]  Pierre Mertiny,et al.  An experimental investigation on the effect of multi-angle filament winding on the strength of tubular composite structures , 2004 .

[15]  Y. Tomita,et al.  Computational Characterization of Micro- to Mesoscopic Deformation Behavior of Semicrystalline Polymers , 2005 .

[16]  N. Ohno,et al.  Effects of fiber distribution on elastic–viscoplastic behavior of long fiber-reinforced laminates , 2003 .

[17]  F. Scarpa,et al.  Modelling the influence of the orientation and fibre reinforcement on the Negative Poisson's ratio in composite laminates , 2007 .

[18]  N. Ohno,et al.  Negative through-the-thickness Poisson’s ratio of elastic–viscoplastic angle-ply carbon fiber-reinforced plastic laminates: Homogenization analysis , 2014 .

[19]  T. Matsuda,et al.  Multi-Scale Creep Analysis of Angle-Ply CFRP Laminates Based on a Homogenization Theory , 2010 .

[20]  N. Ohno,et al.  Elastic–viscoplastic behavior of plain-woven GFRP laminates: Homogenization using a reduced domain of analysis , 2007 .

[21]  Carl T. Herakovich,et al.  Composite Laminates with Negative Through-the-Thickness Poisson's Ratios , 1984 .

[22]  Naoki Takano,et al.  Hierarchical modelling of textile composite materials and structures by the homogenization method , 1999 .

[23]  M. Uchida,et al.  Micro-, meso- to macroscopic modeling of deformation behavior of semi-crystalline polymer , 2013 .

[24]  A homogenization theory for elastic–viscoplastic materials with misaligned internal structures , 2011 .

[25]  N. Ohno,et al.  A homogenization theory for elastic–viscoplastic composites with point symmetry of internal distributions , 2001 .

[26]  N. Ohno,et al.  Homogenized properties of elastic–viscoplastic composites with periodic internal structures , 2000 .