Efficient Gaussian Process Inference for Short-Scale Spatio-Temporal Modeling

This paper presents an efficient Gaussian process inference scheme for modeling shortscale phenomena in spatio-temporal datasets. Our model uses a sum of separable, compactly supported covariance functions, which yields a full covariance matrix represented in terms of small sparse matrices operating either on the spatial or temporal domain. The proposed inference procedure is based on Gibbs sampling, in which samples from the conditional distribution of the latent function values are obtained by applying a simple linear transformation to samples drawn from the joint distribution of the function values and the observations. We make use of the proposed model structure and the conjugate gradient method to compute the required transformation. In the experimental part, the proposed algorithm is compared to the standard approach using the sparse Cholesky decomposition and it is shown to be much faster and computationally feasible for 100–1000 times larger datasets. We demonstrate the advantages of the proposed method in the problem of reconstructing sea surface temperature, which requires processing of a real-world dataset with 10 6 observations.

[1]  Alexander Ilin,et al.  Variational Gaussian-process factor analysis for modeling spatio-temporal data , 2009, NIPS.

[2]  E. Ribak,et al.  Constrained realizations of Gaussian fields : a simple algorithm , 1991 .

[3]  Zoubin Ghahramani,et al.  Local and global sparse Gaussian process approximations , 2007, AISTATS.

[4]  W. Nowak,et al.  Application of FFT-based Algorithms for Large-Scale Universal Kriging Problems , 2009 .

[5]  D. Nychka,et al.  Covariance Tapering for Interpolation of Large Spatial Datasets , 2006 .

[6]  Hao Zhang,et al.  Maximum‐likelihood estimation for multivariate spatial linear coregionalization models , 2007 .

[7]  M. Fuentes Testing for separability of spatial–temporal covariance functions , 2006 .

[8]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[9]  Radford M. Neal Slice Sampling , 2003, The Annals of Statistics.

[10]  Radford M. Neal Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .

[11]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[12]  Aki Vehtari,et al.  Modelling local and global phenomena with sparse Gaussian processes , 2008, UAI.

[13]  Ryan P. Adams,et al.  Slice sampling covariance hyperparameters of latent Gaussian models , 2010, NIPS.

[14]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[15]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[16]  D. Myers,et al.  Estimating and modeling space–time correlation structures , 2001 .

[17]  J. Rougier Efficient Emulators for Multivariate Deterministic Functions , 2008 .

[18]  M. Stein Space–Time Covariance Functions , 2005 .

[19]  L. Mark Berliner,et al.  Spatiotemporal Hierarchical Bayesian Modeling Tropical Ocean Surface Winds , 2001 .

[20]  S. De Iacoa,et al.  Space – time analysis using a general product – sum model , 2000 .

[21]  N. Cressie,et al.  Classes of nonseparable, spatio-temporal stationary covariance functions , 1999 .

[22]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[23]  Zoubin Ghahramani,et al.  Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.

[24]  Balaji Rajagopalan,et al.  Analyses of global sea surface temperature 1856–1991 , 1998 .

[25]  Charles M. Bishop Variational principal components , 1999 .

[26]  T. Gneiting Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .