Efficient Gaussian Process Inference for Short-Scale Spatio-Temporal Modeling
暂无分享,去创建一个
[1] Alexander Ilin,et al. Variational Gaussian-process factor analysis for modeling spatio-temporal data , 2009, NIPS.
[2] E. Ribak,et al. Constrained realizations of Gaussian fields : a simple algorithm , 1991 .
[3] Zoubin Ghahramani,et al. Local and global sparse Gaussian process approximations , 2007, AISTATS.
[4] W. Nowak,et al. Application of FFT-based Algorithms for Large-Scale Universal Kriging Problems , 2009 .
[5] D. Nychka,et al. Covariance Tapering for Interpolation of Large Spatial Datasets , 2006 .
[6] Hao Zhang,et al. Maximum‐likelihood estimation for multivariate spatial linear coregionalization models , 2007 .
[7] M. Fuentes. Testing for separability of spatial–temporal covariance functions , 2006 .
[8] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[9] Radford M. Neal. Slice Sampling , 2003, The Annals of Statistics.
[10] Radford M. Neal. Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .
[11] Carl E. Rasmussen,et al. A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..
[12] Aki Vehtari,et al. Modelling local and global phenomena with sparse Gaussian processes , 2008, UAI.
[13] Ryan P. Adams,et al. Slice sampling covariance hyperparameters of latent Gaussian models , 2010, NIPS.
[14] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[15] Michalis K. Titsias,et al. Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.
[16] D. Myers,et al. Estimating and modeling space–time correlation structures , 2001 .
[17] J. Rougier. Efficient Emulators for Multivariate Deterministic Functions , 2008 .
[18] M. Stein. Space–Time Covariance Functions , 2005 .
[19] L. Mark Berliner,et al. Spatiotemporal Hierarchical Bayesian Modeling Tropical Ocean Surface Winds , 2001 .
[20] S. De Iacoa,et al. Space – time analysis using a general product – sum model , 2000 .
[21] N. Cressie,et al. Classes of nonseparable, spatio-temporal stationary covariance functions , 1999 .
[22] J. Shewchuk. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .
[23] Zoubin Ghahramani,et al. Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.
[24] Balaji Rajagopalan,et al. Analyses of global sea surface temperature 1856–1991 , 1998 .
[25] Charles M. Bishop. Variational principal components , 1999 .
[26] T. Gneiting. Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .