Ge/Si nanowire heterostructures as high-performance field-effect transistors

Semiconducting carbon nanotubes and nanowires are potential alternatives to planar metal-oxide-semiconductor field-effect transistors (MOSFETs) owing, for example, to their unique electronic structure and reduced carrier scattering caused by one-dimensional quantum confinement effects. Studies have demonstrated long carrier mean free paths at room temperature in both carbon nanotubes and Ge/Si core/shell nanowires. In the case of carbon nanotube FETs, devices have been fabricated that work close to the ballistic limit. Applications of high-performance carbon nanotube FETs have been hindered, however, by difficulties in producing uniform semiconducting nanotubes, a factor not limiting nanowires, which have been prepared with reproducible electronic properties in high yield as required for large-scale integrated systems. Yet whether nanowire field-effect transistors (NWFETs) can indeed outperform their planar counterparts is still unclear. Here we report studies on Ge/Si core/shell nanowire heterostructures configured as FETs using high-κ dielectrics in a top-gate geometry. The clean one-dimensional hole-gas in the Ge/Si nanowire heterostructures and enhanced gate coupling with high-κ dielectrics give high-performance FETs values of the scaled transconductance (3.3 mS µm-1) and on-current (2.1 mA µm-1) that are three to four times greater than state-of-the-art MOSFETs and are the highest obtained on NWFETs. Furthermore, comparison of the intrinsic switching delay, τ = CV/I, which represents a key metric for device applications, shows that the performance of Ge/Si NWFETs is comparable to similar length carbon nanotube FETs and substantially exceeds the length-dependent scaling of planar silicon MOSFETs.

[1]  H. Sakaki,et al.  Interface roughness scattering in GaAs/AlAs quantum wells , 1987 .

[2]  Gold Electronic transport properties of a two-dimensional electron gas in a silicon quantum-well structure at low temperature. , 1987, Physical review. B, Condensed matter.

[3]  C. Fiegna,et al.  Sub-50 nm gate length n-MOSFETs with 10 nm phosphorus source and drain junctions , 1993, Proceedings of IEEE International Electron Devices Meeting.

[4]  Yasuo Takahashi,et al.  Fabrication technique for Si single-electron transistor operating at room temperature , 1995 .

[5]  Sandip Tiwari,et al.  A silicon nanocrystals based memory , 1996 .

[6]  Toshiro Hiramoto,et al.  Quantum mechanical effects in the silicon quantum dot in a single-electron transistor , 1997 .

[7]  Toshiro Hiramoto,et al.  Effects of traps on charge storage characteristics in metal-oxide-semiconductor memory structures based on silicon nanocrystals , 1998 .

[8]  Steven G. Louie,et al.  Disorder, Pseudospins, and Backscattering in Carbon Nanotubes , 1999 .

[9]  T. Hiramoto,et al.  Experimental evidence for quantum mechanical narrow channel effect in ultra-narrow MOSFET's , 2000, IEEE Electron Device Letters.

[10]  G. Dewey,et al.  30 nm physical gate length CMOS transistors with 1.0 ps n-MOS and 1.7 ps p-MOS gate delays , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[11]  T. Hiramoto,et al.  Impact of quantum mechanical effects on design of nano-scale narrow channel n- and p-type MOSFETs , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[12]  Tadashi Shibata,et al.  Analog Soft-Pattern-Matching Classifier using Floating-Gate MOS Technology , 2001, NIPS.

[13]  Qi Xiang,et al.  15 nm gate length planar CMOS transistor , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[14]  Masumi Saitoh,et al.  Transport spectroscopy of the ultrasmall silicon quantum dot in a single-electron transistor , 2001 .

[15]  C Lavoie,et al.  Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. , 2001, Physical review letters.

[16]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[17]  Phaedon Avouris,et al.  Molecular electronics with carbon nanotubes. , 2002, Accounts of chemical research.

[18]  Mark S. Lundstrom,et al.  High-κ dielectrics for advanced carbon-nanotube transistors and logic gates , 2002 .

[19]  T. Numata,et al.  Experimental study on carrier transport mechanism in ultrathin-body SOI nand p-MOSFETs with SOI thickness less than 5 nm , 2002, Digest. International Electron Devices Meeting,.

[20]  M. Lundstrom,et al.  Does source-to-drain tunneling limit the ultimate scaling of MOSFETs? , 2002, Digest. International Electron Devices Meeting,.

[21]  S. Datta,et al.  Performance projections for ballistic carbon nanotube field-effect transistors , 2002 .

[22]  Robert M. Wallace,et al.  High-κ gate dielectric materials , 2002 .

[23]  H.-S.P. Wong,et al.  Extreme scaling with ultra-thin Si channel MOSFETs , 2002, Digest. International Electron Devices Meeting,.

[24]  R. Wallace,et al.  Alternative Gate Dielectrics for Microelectronics , 2002 .

[25]  Chenming Hu,et al.  Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor technology , 2002 .

[26]  P. McEuen,et al.  Single-walled carbon nanotube electronics , 2002 .

[27]  Qian Wang,et al.  Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics , 2003 .

[28]  P. Solomon,et al.  Six-band k⋅p calculation of the hole mobility in silicon inversion layers: Dependence on surface orientation, strain, and silicon thickness , 2003 .

[29]  Charles M. Lieber,et al.  Nanoscale Science and Technology: Building a Big Future from Small Things , 2003 .

[30]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[31]  A. Ogura,et al.  Sub-10-nm planar-bulk-CMOS devices using lateral junction control , 2003, IEEE International Electron Devices Meeting 2003.

[32]  W. Bai,et al.  Epitaxial strained germanium p-MOSFETs with HfO/sub 2/ gate dielectric and TaN gate electrode , 2003, IEEE International Electron Devices Meeting 2003.

[33]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[34]  Electrostatics of nanowire transistors , 2003 .

[35]  R. Chau,et al.  Benchmarking nanotechnology for high-performance and low-power logic transistor applications , 2004, IEEE Transactions on Nanotechnology.

[36]  J. Kavalieros,et al.  High-/spl kappa//metal-gate stack and its MOSFET characteristics , 2004, IEEE Electron Device Letters.

[37]  Jing Guo,et al.  Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-κ Gate Dielectrics , 2004 .

[38]  Suman Datta,et al.  High- /Metal-Gate Stack and Its MOSFET Characteristics , 2004 .

[39]  Michael C. McAlpine,et al.  Scalable Interconnection and Integration of Nanowire Devices without Registration , 2004 .

[40]  Wei Lu,et al.  Synthesis and Fabrication of High‐Performance n‐Type Silicon Nanowire Transistors , 2004 .

[41]  T. Hiramoto,et al.  Room-temperature demonstration of integrated silicon single-electron transistor circuits for current switching and analog pattern matching , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[42]  I. Aberg,et al.  High electron and hole mobility enhancements in thin-body strained Si/strained SiGe/strained Si heterostructures on insulator , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[43]  M. Lundstrom,et al.  Performance analysis and design optimization of near ballistic carbon nanotube field-effect transistors , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[44]  T. Tezuka,et al.  Selectively-formed high mobility SiGe-on-Insulator pMOSFETs with Ge-rich strained surface channels using local condensation technique , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[45]  Masumi Saitoh,et al.  Room-temperature demonstration of highly-functional single-hole transistor logic based on quantum mechanical effect , 2004 .

[46]  Charles M. Lieber,et al.  Growth and transport properties of complementary germanium nanowire field-effect transistors , 2004 .

[47]  Masumi Saitoh,et al.  Extension of Coulomb blockade region by quantum confinement in the ultrasmall silicon dot in a single-hole transistor at room temperature , 2004 .

[48]  T. Hiramoto,et al.  Scaling of nanocrystal memory cell by direct tungsten bitline on self-aligned landing plug polysilicon contact , 2004, IEEE Electron Device Letters.

[49]  Jing Guo,et al.  High-field quasiballistic transport in short carbon nanotubes. , 2003, Physical review letters.

[50]  Phaedon Avouris,et al.  Ambipolar-to-Unipolar Conversion of Carbon Nanotube Transistors by Gate Structure Engineering , 2004 .

[51]  Masumi Saitoh,et al.  Room-Temperature Operation of Current Switching Circuit Using Integrated Silicon Single-Hole Transistors , 2005 .

[52]  Masumi Saitoh,et al.  Superior mobility characteristics in [110]-oriented ultra thin body pMOSFETs with SOI thickness less than 6 nm , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[53]  Avik W. Ghosh,et al.  Theoretical investigation of surface roughness scattering in silicon nanowire transistors , 2005, cond-mat/0502538.

[54]  Donhee Ham,et al.  Nanotechnology: High-speed integrated nanowire circuits , 2005, Nature.

[55]  M. J. Rost,et al.  Pushing the limits of SPM , 2005 .

[56]  Masumi Saitoh,et al.  Very Sharp Room-Temperature Negative Differential Conductance in Silicon Single-Hole Transistor with High Voltage Gain , 2005 .

[57]  Charles M Lieber,et al.  One-dimensional hole gas in germanium/silicon nanowire heterostructures. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[58]  T. Hiramoto,et al.  Experimental study on superior mobility in [110]-oriented UTB SOI pMOSFETs , 2005, IEEE Electron Device Letters.

[59]  Hao Yan,et al.  Si nanowire heterostructures as high-performance field-effect transistors , 2006 .

[60]  Masumi Saitoh,et al.  Emerging nanoscale silicon devices taking advantage of nanostructure physics , 2006, IBM J. Res. Dev..