The IceCube Neutrino Observatory: instrumentation and online systems

The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.

P. O. Hulth | J. C. D'iaz-V'elez | S. Ter-Antonyan | J. Kelley | J. Pepper | G. Binder | A. Olivas | M. Ackermann | J. Adams | J. Aguilar | M. Ahlers | M. Ahrens | D. Altmann | K. Andeen | T. Anderson | I. Ansseau | G. Anton | J. Auffenberg | S. Axani | X. Bai | S. Barwick | V. Baum | R. Bay | J. Beatty | J. Tjus | K. Becker | S. BenZvi | D. Berley | E. Bernardini | D. Besson | D. Bindig | E. Blaufuss | S. Blot | C. Bohm | F. Bos | O. Botner | J. Braun | H. Bretz | S. Bron | A. Burgman | T. Carver | E. Cheung | D. Chirkin | A. Christov | K. Clark | L. Classen | S. Coenders | G. Collin | D. Cowen | R. Cross | M. Day | C. Clercq | H. Dembinski | P. Desiati | K. D. Vries | G. Wasseige | T. DeYoung | V. Lorenzo | H. Dujmovic | J. Dumm | M. Dunkman | B. Eberhardt | T. Ehrhardt | B. Eichmann | P. Eller | P. Evenson | S. Fahey | A. Fazely | J. Felde | K. Filimonov | C. Finley | S. Flis | A. Franckowiak | E. Friedman | T. Gaisser | J. Gallagher | L. Gerhardt | K. Ghorbani | T. Glauch | A. Goldschmidt | D. Grant | Z. Griffith | C. Haack | A. Hallgren | F. Halzen | K. Hanson | D. Hebecker | D. Heereman | K. Helbing | R. Hellauer | S. Hickford | J. Hignight | G. Hill | K. Hoffman | R. Hoffmann | K. Hoshina | F. Huang | M. Huber | K. Hultqvist | S. In | A. Ishihara | E. Jacobi | G. Japaridze | M. Jeong | K. Jero | B. Jones | W. Kang | A. Kappes | T. Karg | A. Karle | U. Katz | M. Kauer | A. Keivani | A. Kheirandish | J. Kim | T. Kintscher | J. Kiryluk | T. Kittler | S. Klein | R. Koirala | H. Kolanoski | L. Köpke | C. Kopper | S. Kopper | D. Koskinen | M. Kowalski | K. Krings | M. Kroll | G. Krückl | S. Kunwar | N. Kurahashi | T. Kuwabara | M. Labare | J. Lanfranchi | M. Larson | F. Lauber | M. Lesiak-Bzdak | M. Leuermann | L. Lu | J. Lünemann | J. Madsen | G. Maggi | K. Mahn | S. Mancina | R. Maruyama | K. Mase | R. Maunu | K. Meagher | M. Medici | M. Meier | T. Menne | G. Merino | T. Meures | S. Miarecki | T. Montaruli | M. Moulai | R. Nahnhauer | U. Naumann | G. Neer | H. Niederhausen | S. Nowicki | D. Nygren | A. Pollmann | A. O'Murchadha | T. Palczewski | H. Pandya | D. Pankova | P. Peiffer | C. P. Heros | D. Pieloth | E. Pinat | P. Price | G. Przybylski | C. Raab | L. Rädel | M. Rameez | K. Rawlins | R. Reimann | B. Relethford | M. Relich | E. Resconi | W. Rhode | M. Richman | M. Rongen | C. Rott | T. Ruhe | D. Ryckbosch | D. Rysewyk | S. Herrera | A. Sandrock | J. Sandroos | S. Sarkar | K. Satalecka | P. Schlunder | T. Schmidt | S. Schoenen | S. Schöneberg | L. Schumacher | D. Seckel | S. Seunarine | D. Soldin | M. Song | G. Spiczak | C. Spiering | T. Stanev | Alexander Stasik | J. Stettner | A. Steuer | T. Stezelberger | R. Stokstad | A. Stößl | N. Strotjohann | G. Sullivan | M. Sutherland | I. Taboada | J. Tatar | F. Tenholt | A. Terliuk | S. Tilav | P. Toale | M. Tobin | S. Toscano | D. Tosi | M. Tselengidou | A. Turcati | E. Unger | M. Usner | J. Vandenbroucke | N. Eijndhoven | S. Vanheule | J. Santen | E. Vogel | M. Vraeghe | C. Walck | A. Wallace | M. Wallraff | N. Wandkowsky | C. Weaver | M. Weiss | C. Wendt | S. Westerhoff | B. Whelan | K. Wiebe | C. Wiebusch | L. Wille | D. Williams | L. Wills | M. Wolf | T. R. Wood | K. Woschnagg | D. Xu | X. Xu | J. Yáñez | G. Yodh | G. Tevsi'c | H. Leich | J. Jacobsen | S. Patton | S. Kleinfelder | H. Matis | A. Meli | M. Kim | M. Quinnan | M. Frere | A. Bouchta | L. Gustafsson | G. Tesic | H. Landsman | J. Andr'e | K. Laihem | W. Edwards | D. Wahl | C. Day | C. Arguelles | M. Voge | K. Beattie | M. Bissok | D. Boersma | D. Bose | F. Descamps | S. Euler | L. Gladstone | J. Joseph | G. Kohnen | M. Krasberg | T. Schmidt | A. Schukraft | H. Taavola | M. Vehring | S. Yoshida | M. Solarz | L. Thollander | C. McParland | K. Sulanke | J. Haugen | M. Inaba | N. Kitamura | L. Kopke | A. Laundrie | D. Lennarz | J. Lunemann | C. Heros | C. Roucelle | P. Sandstrom | S. Boser | T. Glusenkamp | P. Meade | L. Sabbatini | R. Auer | R. Strom | R. Ström | J. Feintzeig | M. Zoll | A. Bernhard | L. Brayeur | M. Casier | T. Fuchs | J. Kunnen | F. McNally | M. Rameez | B. Riedel | I. C. M. Aartsen | S. Ridder | M. With | O. Penek | L. Radel | S. Robertson | S. Schoneberg | A. Stossl | D. Williams | C. Pettersen | J. Kemp | S. Yoshida | P. Wisniewski | M. Kleist | Ö. Penek | M. Archinger | M. Borner | E. del Pino Rosendo | C.-C. Fosig | R. Konietz | Y. Xu | E. Hansen | W. Giang | T. Hansmann | C. Krüger | M. Mandelartz | M. Rossem | S. Wickmann | E. Woolsey | T. Murray | T. Kuwabara | M. Newcomb | G. Kruckl | C. Kruger | R. Heller | M. Newcomb | D. Glowacki | M. Kowalski | A. Olivas | S. Sarkar | A. Jones | R. Minor | I. Taboada | J. Conrad | J. Kemp | M. Kleist | J. Ludwig | C. Mackenzie | R. Maruyama | P. Meade | R. H. Minor | S. Patton | J. Pepper | C. Pettersen | D. Wahl | D. Wharton | P. Wisniewski | J. Baccus | S. Barnet | T. Bendfelt | C. Burreson | D. Xu | J. G. Gonzalez | C. Mcparland

[1]  V. Baum,et al.  Recent improvements in the detection of supernovae with the IceCube observatory , 2016 .

[2]  M. Rongen Measuring the optical properties of IceCube drill holes , 2016 .

[3]  P. Favali,et al.  Letter of intent for KM3NeT 2.0 , 2016, 1601.07459.

[4]  D. Chirkin Evidence of optical anisotropy of the South Pole ice , 2016 .

[5]  D. Jansen,et al.  Small-scale disturbances in the stratigraphy of the NEEM ice core: observations and numerical model simulations , 2015 .

[6]  J. Tjus,et al.  Observation of the Cosmic-Ray Shadow of the Moon and Sun with IceCube , 2015 .

[7]  M.-H. A. Huang,et al.  Performance of two Askaryan Radio Array stations and first results in the search for ultrahigh energy neutrinos , 2015, 1507.08991.

[8]  N. Omodei,et al.  Fermi Large Area Telescope observations of high-energy gamma-ray emission from behind-the-limb solar flares , 2015, 1507.04303.

[9]  K. Hanson,et al.  HitSpooling: an improvement for the supernova neutrino detection system in icecube , 2015 .

[10]  P. O. Hulth,et al.  THE DETECTION OF A SN IIn IN OPTICAL FOLLOW-UP OBSERVATIONS OF ICECUBE NEUTRINO EVENTS , 2015, 1506.03115.

[11]  R. Makarevich,et al.  Electric field control of E region coherent echoes: Evidence from radar observations at the South Pole , 2015 .

[12]  D. Tosi,et al.  Calibrating the photon detection efficiency in IceCube , 2015, 1502.03102.

[13]  A. Schukraft,et al.  IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica , 2014, 1412.5106.

[14]  A. Karle,et al.  IceCube Enhanced Hot Water Drill functional description , 2014, Annals of Glaciology.

[15]  J. Kelley Event triggering in the IceCube data acquisition system , 2014 .

[16]  D. Dahl-Jensen,et al.  Fabric along the NEEM ice core, Greenland, and its comparison with GRIP and NGRIP ice cores , 2014 .

[17]  N. Stanisha Characterization of Low-dt Non-poisson Noise in the Icecube Neutrino Detector , 2014 .

[18]  J. P. Rodrigues,et al.  Search for non-relativistic magnetic monopoles with IceCube , 2014, 1402.3460.

[19]  The IceCube Collaboration Letter of Intent: The Precision IceCube Next Generation Upgrade (PINGU) , 2014, 1401.2046.

[20]  A. Schukraft,et al.  Letter of Intent: The Precision IceCube Next Generation Upgrade (PINGU) , 2017 .

[21]  M. Larson Simulation and identification of non-Poissonian noise triggers in the IceCube neutrino detector , 2013 .

[22]  J. P. Rodrigues,et al.  Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector , 2013, Science.

[23]  P. O. Hulth,et al.  Energy reconstruction methods in the IceCube neutrino telescope , 2013, 1311.4767.

[24]  G. Binder,et al.  South Pole Glacial Climate Reconstruction from Multi-Borehole Laser Particulate Stratigraphy , 2013 .

[25]  P. O. Hulth,et al.  The IceCube Neutrino Observatory Part VI: Ice Properties, Reconstruction and Future Developments , 2013, 1309.7010.

[26]  A. A. Smagina,et al.  The prototyping/early construction phase of the BAIKAL-GVD project , 2013, 1308.1833.

[27]  A. Schukraft,et al.  Measurement of the cosmic ray energy spectrum with IceTop-73 , 2013, 1307.3795.

[28]  P. O. Hulth,et al.  Observation of the cosmic-ray shadow of the Moon with IceCube , 2013, 1305.6811.

[29]  J. P. Rodrigues,et al.  Measurement of South Pole ice transparency with the IceCube LED calibration system , 2013, 1301.5361.

[30]  J. P. Rodrigues,et al.  The design and performance of IceCube DeepCore , 2011, 1109.6096.

[31]  P. O. Hulth,et al.  Searching for soft relativistic jets in core-collapse supernovae with the IceCube optical follow-up program , 2011, 1111.7030.

[32]  J. R. Hubbard,et al.  ANTARES: the first undersea neutrino telescope , 2011 .

[33]  P. O. Hulth,et al.  IceCube sensitivity for low-energy neutrinos from nearby supernovae , 2011, 1108.0171.

[34]  A. Collaboration ANTARES: The first undersea neutrino telescope , 2011, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[35]  F. Halzen,et al.  Invited review article: IceCube: an instrument for neutrino astronomy. , 2010, The Review of scientific instruments.

[36]  H. Meyer Spontaneous electron emission from a cold surface , 2010 .

[37]  J. P. Rodrigues,et al.  Calibration and characterization of the IceCube photomultiplier tube , 2010, 1002.2442.

[38]  E. Calvo,et al.  Characterization of large-area photomultipliers under low magnetic fields: Design and performance of the magnetic shielding for the Double Chooz neutrino experiment , 2009, 0905.3246.

[39]  R. U. Abbasi,et al.  The IceCube data acquisition system: Signal capture, digitization,and timestamping , 2008, 0810.4930.

[40]  H. S. Matis,et al.  The IceCube data acquisition system: Signal capture, digitization,and timestamping , 2009 .

[41]  P. O. Hulth,et al.  First year performance of the IceCube neutrino telescope , 2006 .

[42]  S. Avery,et al.  Statistical characterization of the meteor trail distribution at the South Pole as seen by a VHF interferometric meteor radar , 2006 .

[43]  E. al.,et al.  The IceCube prototype string in Amanda , 2006, astro-ph/0601397.

[44]  R. Bay,et al.  A deep high‐resolution optical log of dust, ash, and stratigraphy in South Pole glacial ice , 2005 .

[45]  S. Kim,et al.  Evidence for an oscillatory signature in atmospheric neutrino oscillations. , 2004, Physical review letters.

[46]  Leif J. Robinson,et al.  SNEWS: the SuperNova Early Warning System , 2004, astro-ph/0406214.

[47]  O. Botner,et al.  Muon Track Reconstruction and Data Selection Techniques in AMANDA , 2004 .

[48]  F. Pattyn A new three-dimensional higher-order thermomechanical ice sheet model: Basic sensitivity, ice stream development, and ice flow across subglacial lakes , 2003 .

[49]  J. P. Rodrigues,et al.  IceTop: The Surface Component of IceCube , 2003, 1207.6326.

[50]  Stuart Kleinfelder,et al.  Advanced transient waveform digitizers , 2003, SPIE Astronomical Telescopes + Instrumentation.

[51]  R. C. Bay,et al.  Temperature profile for glacial ice at the South Pole: Implications for life in a nearby subglacial lake , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[52]  T. Gaisser High-energy neutrino astronomy: The Cosmic ray connection , 2000, astro-ph/0011525.

[53]  P. Price,et al.  Role of group and phase velocity in high-energy neutrino observatories , 2000, hep-ex/0008001.

[54]  E. al.,et al.  The AMANDA neutrino telescope: Principle of operation and first results , 1999, astro-ph/9906203.

[55]  R. Protheroe High-energy neutrino astrophysics , 1998, astro-ph/9809144.

[56]  C. K. Lee,et al.  Measurement of the Solar Electron Neutrino Flux with the Homestake Chlorine Detector , 1998 .

[57]  Valery Zurbanov,et al.  The Baikal underwater neutrino telescope: Design, performance, and first results , 1997 .

[58]  Todor Stanev,et al.  Particle astrophysics with high energy neutrinos , 1995 .

[59]  T. Gaisser,et al.  Particle astrophysics with high energy neutrinos , 1994, hep-ph/9410384.

[60]  B. Barish,et al.  Cosmic-ray muons in the deep ocean , 1990 .

[61]  Learned,et al.  Cosmic-ray muons in the deep ocean. , 1990, Physical review. D, Particles and fields.

[62]  Hirata,et al.  Observation in the Kamiokande-II detector of the neutrino burst from supernova SN1987A. , 1988, Physical review. D, Particles and fields.

[63]  V. Volchenko,et al.  Possible Detection of a Neutrino Signal on 23 February 1987 at the Baksan Underground Scintillation Telescope of the Institute of Nuclear Research , 1987 .

[64]  Park,et al.  Observation of a neutrino burst in coincidence with supernova 1987A in the Large Magellanic Cloud. , 1987, Physical review letters.

[65]  Hirata,et al.  Observation of a neutrino burst from the supernova SN1987A. , 1987, Physical review letters.

[66]  R. Armstrong,et al.  The Physics of Glaciers , 1981 .

[67]  J. Sellschop,et al.  Evidence for high-energy cosmic ray neutrino interactions , 1965 .

[68]  V. S. Narasimham,et al.  Detection of muons produced by cosmic ray neutrinos deep underground , 1965 .

[69]  E. B. Wilson Probable Inference, the Law of Succession, and Statistical Inference , 1927 .

[70]  B. Riedel Modeling and Understanding Supernova Signals in the IceCube Neutrino Observatory , 2014 .

[71]  Alexander Piégsa Supernova-Detektion mit dem IceCube-Neutrinoteleskop , 2009 .

[72]  J. Kiryluk,et al.  IceCube Performance with Artificial Light Sources: the Road to Cascade Analyses , 2007 .

[73]  O. Botner,et al.  The IceCube Prototype String in AMANDA , 2006 .

[74]  De Young,et al.  IceTray : a Software Framework for IceCube , 2005 .

[75]  T. Mizuno,et al.  Photon emission accompanying deformation and fracture of ice , 2003 .

[76]  R. C. Allen,et al.  Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. , 2002, Physical review letters.

[77]  C. L. Cowan,et al.  DETECTION OF THE FREE ANTINEUTRINO , 1960 .

[78]  T. DeYoung,et al.  ICETRAY : A SOFTWARE FRAMEWORK FOR ICECUBE , 2022 .