Transport of energy by disturbances in arbitrary steady flows

An exact equation governing the transport of energy associated with disturbances in an arbitrary steady flow is derived. The result is a generalization of the familiar concept of acoustic energy and is suggested by a perturbation expansion of the general energy equation of fluid mechanics. A disturbance energy density and flux are defined and identified as exact fluid dynamic quantities whose leading-order regular perturbation representations reduce in various special cases to previously known results. The exact equation on disturbance energy is applied to a simple example of nonlinear wave propagation as an illustration of its general utility in situations where a linear description of the disturbance is inadequate.