Recent Developments in Dense Numerical Linear Algebra Recent Developments in Dense Numerical Linear Algebra
暂无分享,去创建一个
[1] G. Schulz. Iterative Berechung der reziproken Matrix , 1933 .
[2] An Automatic Computing Engine for the National Physical Laboratory , 1946, Nature.
[3] James Hardy Wilkinson. The automatic computing engine at the National Physical Laboratory , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[4] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[5] W. Kahan. Accurate eigenvalues of a symmetric tri-diagonal matrix , 1966 .
[6] C. Lawson,et al. Extensions and applications of the Householder algorithm for solving linear least squares problems , 1969 .
[7] G. Stewart,et al. On the Numerical Properties of an Iterative Method for Computing the Moore–Penrose Generalized Inverse , 1974 .
[8] J. Bunch,et al. Some stable methods for calculating inertia and solving symmetric linear systems , 1977 .
[9] L. Csanky,et al. Fast parallel matrix inversion algorithms , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).
[10] G. Stewart,et al. A Stable Variant of the Secant Method for Solving Nonlinear Equations , 1976 .
[11] B. S. Garbow,et al. Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.
[12] Jack J. Dongarra,et al. Matrix Eigensystem Routines — EISPACK Guide Extension , 1977, Lecture Notes in Computer Science.
[13] H. Wozniakowski,et al. Iterative refinement implies numerical stability , 1977 .
[14] J. Bunch,et al. Rank-one modification of the symmetric eigenproblem , 1978 .
[15] J. H. Wilkinson,et al. AN ESTIMATE FOR THE CONDITION NUMBER OF A MATRIX , 1979 .
[16] Charles L. Lawson,et al. Basic Linear Algebra Subprograms for Fortran Usage , 1979, TOMS.
[17] J. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .
[18] R. Skeel. Iterative refinement implies numerical stability for Gaussian elimination , 1980 .
[19] J. D. Roberts,et al. Linear model reduction and solution of the algebraic Riccati equation by use of the sign function , 1980 .
[20] Cleve B. Moler. Demonstration of a matrix Laboratory , 1982 .
[21] J. L. Howland. The sign matrix and the separation of matrix eigenvalues , 1983 .
[22] Gene H. Golub,et al. Matrix computations , 1983 .
[23] F. Gustavson,et al. Implementing Linear Algebra Algorithms for Dense Matrices on a Vector Pipeline Machine , 1984 .
[24] Christian H. Bischof,et al. The WY representation for products of householder matrices , 1985, PPSC.
[25] Danny C. Sorensen,et al. Analysis of Pairwise Pivoting in Gaussian Elimination , 1985, IEEE Transactions on Computers.
[26] L. Foster. Rank and null space calculations using matrix decomposition without column interchanges , 1986 .
[27] Jack Dongarra,et al. LINPACK Users' Guide , 1987 .
[28] T. Chan. Rank revealing QR factorizations , 1987 .
[29] V. Hari,et al. On Jacobi methods for singular value decompositions , 1987 .
[30] J. Barlow,et al. Computing accurate eigensystems of scaled diagonally dominant matrices: LAPACK working note No. 7 , 1988 .
[31] B. Parlett,et al. Block reflectors: theory and computation , 1988 .
[32] Jack J. Dongarra,et al. Algorithm 656: an extended set of basic linear algebra subprograms: model implementation and test programs , 1988, TOMS.
[33] Nicholas J. Higham,et al. FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation , 1988, TOMS.
[34] J. Ortega. Introduction to Parallel and Vector Solution of Linear Systems , 1988, Frontiers of Computer Science.
[35] Jack J. Dongarra,et al. An extended set of FORTRAN basic linear algebra subprograms , 1988, TOMS.
[36] James Demmel,et al. On a Block Implementation of Hessenberg Multishift QR Iteration , 1989, Int. J. High Speed Comput..
[37] Stephen A. Vavasis. Gaussian Elimination with Pivoting is P-Complete , 1989, SIAM J. Discret. Math..
[38] C. Loan,et al. A Storage-Efficient $WY$ Representation for Products of Householder Transformations , 1989 .
[39] R. Schreiber,et al. On the convergence of the cyclic Jacobi method for parallel block orderings , 1989 .
[40] N. Higham,et al. Large growth factors in Gaussian elimination with pivoting , 1989 .
[41] P. P. Rijk. A one-sided Jacobi algorithm for computing the singular value decomposition on avector computer , 1989 .
[42] J. Demmel,et al. The bidiagonal singular value decomposition and Hamiltonian mechanics: LAPACK working note No. 11 , 1989 .
[43] I. Duff,et al. On the augmented system approach to sparse least-squares problems , 1989 .
[44] Jack J. Dongarra,et al. A set of level 3 basic linear algebra subprograms , 1990, TOMS.
[45] L. Trefethen,et al. Average-case stability of Gaussian elimination , 1990 .
[46] S. Batterson. Convergence of the shifted QR algorithm on 3×3 normal matrices , 1990 .
[47] K. A. Gallivan,et al. Parallel Algorithms for Dense Linear Algebra Computations , 1990, SIAM Rev..
[48] James Demmel,et al. Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..
[49] Nicholas J. Higham,et al. Exploiting fast matrix multiplication within the level 3 BLAS , 1990, TOMS.
[50] D. Sorensen,et al. Block reduction of matrices to condensed forms for eigenvalue computations , 1990 .
[51] Jack J. Dongarra,et al. Algorithm 679: A set of level 3 basic linear algebra subprograms: model implementation and test programs , 1990, TOMS.
[52] Jack J. Dongarra,et al. Solving linear systems on vector and shared memory computers , 1990 .
[53] E. Jessup. A case against a divide and conquer approach to the nonsymmetric eigenvalue problem , 1993 .
[54] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[55] N. Gould. On growth in Gaussian elimination with complete pivoting , 1991 .
[56] E. Stickel. Separating eigenvalues using the matrix sign function , 1991 .
[57] Victor Y. Pan,et al. An Improved Newton Iteration for the Generalized Inverse of a Matrix, with Applications , 1991, SIAM J. Sci. Comput..
[58] Jack Dongarra,et al. LAPACK Working Note 39: On Designing Portable High Performance Numerical Libraries , 1991 .
[59] J. Demmel. Open problems in numerical linear algebra , 1992 .
[60] T. Y. Li,et al. Solving eigenvalue problems of real nonsymmetric matrices with real homotopies , 1992 .
[61] James Demmel,et al. Stability of block algorithms with fast level-3 BLAS , 1992, TOMS.
[62] A. Edelman. The Complete Pivoting Conjecture for Gaussian Elimination is False , 1992 .
[63] Bart De Moor,et al. Generalizations of the Singular Value and QR-Decompositions , 1992, SIAM J. Matrix Anal. Appl..
[64] C. Pan,et al. Rank-Revealing QR Factorizations and the Singular Value Decomposition , 1992 .
[65] Christopher C. Paige,et al. Loss and Recapture of Orthogonality in the Modified Gram-Schmidt Algorithm , 1992, SIAM J. Matrix Anal. Appl..
[66] J. Demmel. Trading Off Parallelism and Numerical Stability , 1992 .
[67] James Demmel,et al. Jacobi's Method is More Accurate than QR , 1989, SIAM J. Matrix Anal. Appl..
[68] G. W. Stewart,et al. An updating algorithm for subspace tracking , 1992, IEEE Trans. Signal Process..
[69] R Jessup,et al. A Parallel Algorithm for Computing the Singular Value Decomposition of a Matrix:A Revision of Argonne National Laboratory Tech. Report ANL/MCS-TM-102 ; CU-CS-623-92 , 1994 .
[70] John R. Gilbert,et al. Sparse Matrices in MATLAB: Design and Implementation , 1992, SIAM J. Matrix Anal. Appl..
[71] N. Higham,et al. Stability of methods for matrix inversion , 1992 .
[72] Ronald R. Coifman,et al. Wavelet-Like Bases for the Fast Solution of Second-Kind Integral Equations , 1993, SIAM J. Sci. Comput..
[73] Shing-Tung Yau,et al. Reducing the Symmetric Matrix Eigenvalue Problem to Matrix Multiplications , 1993, SIAM J. Sci. Comput..
[74] J. Demmel,et al. On swapping diagonal blocks in real Schur form , 1993 .
[75] James Demmel,et al. On computing condition numbers for the nonsymmetric eigenproblem , 1993, TOMS.
[76] James Demmel,et al. Parallel numerical linear algebra , 1993, Acta Numerica.
[77] Ivan Slapničar,et al. Accurate Symmetric Eigenreduction by a Jacobi Method , 1993 .
[78] James Demmel,et al. Design of a Parallel Nonsymmetric Eigenroutine Toolbox, Part I , 1993, PPSC.
[79] G. Stewart. Updating a Rank-Revealing ULV Decomposition , 1993, SIAM J. Matrix Anal. Appl..
[80] James Demmel,et al. Computing the Generalized Singular Value Decomposition , 1993, SIAM J. Sci. Comput..
[81] Stephen J. Wright. A Collection of Problems for Which Gaussian Elimination with Partial Pivoting is Unstable , 1993, SIAM J. Sci. Comput..
[82] Jack J. Dongarra,et al. A Parallel Algorithm for the Nonsymmetric Eigenvalue Problem , 1991, SIAM J. Sci. Comput..
[83] Ilse C. F. Ipsen,et al. On Rank-Revealing Factorisations , 1994, SIAM J. Matrix Anal. Appl..
[84] L. Foster. Gaussian Elimination with Partial Pivoting Can Fail in Practice , 1994, SIAM J. Matrix Anal. Appl..
[85] S. Eisenstat,et al. A Stable and Efficient Algorithm for the Rank-One Modification of the Symmetric Eigenproblem , 1994, SIAM J. Matrix Anal. Appl..
[86] Å. Björck,et al. Solution of augmented linear systems using orthogonal factorizations , 1994 .
[87] Mark T. Jones,et al. Factoring Symmetric Indefinite Matrices on High-Performance Architectures , 1994 .
[88] J. Demmel,et al. LAPACK Working Note 88: Efficient Computation of the Singular Value Decomposition with Applications to Least Squares Problems , 1994 .
[89] J. Demmel,et al. Inverse Free Parallel Spectral Divide and Conquer Algorithms for Nonsymmetric Eigenproblems , 1994 .
[90] B. Parlett,et al. Accurate singular values and differential qd algorithms , 1994 .
[91] J. Demmel,et al. On the correctness of some bisection-like parallel eigenvalue algorithms in floating point arithmetic. , 1995 .
[92] Beresford N. Parlett,et al. The New qd Algorithms , 1995, Acta Numerica.
[93] Linda Kaufman. Computing the MDMT decomposition , 1995, TOMS.
[94] Stanley C. Eisenstat,et al. A Divide-and-Conquer Algorithm for the Bidiagonal SVD , 1995, SIAM J. Matrix Anal. Appl..
[95] Jack Dongarra,et al. LAPACK Working Note 109 BLAS Technical Workshop , 1995 .
[96] Roy Mathias. Accurate Eigensystem Computations by Jacobi Methods , 1995, SIAM J. Matrix Anal. Appl..
[97] Ji-Guang Sun,et al. Optimal backward perturbation bounds for the linear least squares problem , 1995, Numer. Linear Algebra Appl..
[98] James R. Bunch,et al. Bounding the Subspaces from Rank Revealing Two-Sided Orthogonal Decompositions , 1995, SIAM J. Matrix Anal. Appl..
[99] James Demmel,et al. Stability of block LU factorization , 1992, Numer. Linear Algebra Appl..
[100] Beresford N. Parlett,et al. Implicit Cholesky algorithms for singular values and vectors of triangular matrices , 1993, Numer. Linear Algebra Appl..
[101] M. SIAMJ.. STABILITY OF THE DIAGONAL PIVOTING METHOD WITH PARTIAL PIVOTING , 1995 .
[102] A. Laub,et al. The matrix sign function , 1995, IEEE Trans. Autom. Control..
[103] Nicholas J. Higham. Stability of Parallel Triangular System Solvers , 1995, SIAM J. Sci. Comput..
[104] Jack Dongarra,et al. LAPACK++ V. 1.0: High Performance Linear Algebra Users'' Guides , 1995 .
[105] Jack Dongarra,et al. Libraries for linear algebra , 1995 .
[106] Haesun Park,et al. Downdating the Rank-Revealing URV Decomposition , 1995, SIAM J. Matrix Anal. Appl..
[107] Ming Gu,et al. Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..
[108] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[109] Gisela Engeln-Müllges,et al. Direct Methods for Solving Systems of Linear Equations , 1996 .
[110] H. Zha,et al. An algorithm and a stability theory for downdating the ULV decomposition , 1996 .
[111] Ji-guang Sun. Optimal backward perturbation bounds for the linear least-squares problem with multiple right-hand sides , 1996 .
[112] Robert A. van de Geijn,et al. Parallelizing the QR Algorithm for the Unsymmetric Algebraic Eigenvalue Problem: Myths and Reality , 1996, SIAM J. Sci. Comput..
[113] D. Day. How the QR algorithm fails to converge and how to fix it , 1996 .
[114] Jaeyoung Choi,et al. Design and Implementation of the ScaLAPACK LU, QR, and Cholesky Factorization Routines , 1994, Sci. Program..
[115] Ji-guang Sun,et al. Optimal Backward Perturbation Bounds for Underdetermined Systems , 1997 .
[116] T. Chan,et al. Probabilistic Analysis of Gaussian Elimination Without Pivoting , 1997 .
[117] John G. Lewis,et al. Accurate Symmetric Indefinite Linear Equation Solvers , 1999, SIAM J. Matrix Anal. Appl..
[118] J. Barlow,et al. An efficient rank detection procedure for modifying the ULV decomposition , 1998 .
[119] A. Bjijrck. Stability Analysis of the Method of Seminormal Equations for Linear Least Squares Problems , 2001 .
[120] David H. Bailey,et al. Using Strassen's algorithm to accelerate the solution of linear systems , 1991, The Journal of Supercomputing.
[121] Bo Kågström,et al. Computing eigenspaces with specified eigenvalues of a regular matrix pair (A, B) and condition estimation: theory, algorithms and software , 1996, Numerical Algorithms.
[122] Y. Danieli. Guide , 2005 .
[123] Gene H. Golub,et al. Some modified matrix eigenvalue problems , 1973, Milestones in Matrix Computation.